PSN COLLEGE OF ENGINEERING AND TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Melathediyoor, Tirunelveli-627152

Department of Electrical and Electronics Engineering

QUESTION BANK

Degree/Branch: B.E / EEE

Semester: III

Subject Code/Title: 504003 / Electromagnetic Field Theory

Regulation: 2018

Academic Year: 2021-2022

Prepared By: Dr. S.Rajasekaran, Assistant Professor - EEE

UNIT I -VECTOR ANALYSIS

Vector fields – Different Co-ordinate systems-Rectangular, Cylindrical and Spherical coordinate systems. Gradient - Divergence – Curl – Line Integral-Surface Integral-Divergence theorem-Stoke's theorem

	Part A (2 marks)			
Q. No	Questions	BT Level	Competence	
1	What are the sources of electro magnetic fields?	BTL 1	Remember	
2	Transform a vector A=ya _x -xa _y +za _z into cylindrical coordinates.	BTL 1	Remember	
3	How the unit vectors are defined in cylindrical co-ordinate systems?	BTL 1	Remember	
4	Give the relation between Cartesian and cylindrical co-ordinate systems	BTL 1	Remember	
5	What is unit vector? What is its function while representing a vector?	BTL 2	Understand	
6	Define dot product.	BTL 3	Apply	
7	Define cross product.	BTL 1	Remember	
8	What is the physical significance of divergence?	BTL 1	Remember	
9	Define gradient	BTL 1	Remember	
10	Define curl.	BTL 1	Remember	
11	State Divergence theorem.	BTL 1	Remember	
12	Define Surface Integral.	BTL 3	Apply	
13	What is volume charge density?	BTL 1	Remember	
14	Define Line Integral.	BTL 1	Remember	
15	State stokes theorem.	BTL 1	Remember	
Part B (16 marks)				
Q. No	Questions	BT Level	Competence	
1.	State and prove Divergence theorem.	BTL 1	Remember	
2.	State and prove Stokes theorem.	BTL 1, BTL 4	Remember, Analyze	

3.	Explain the spherical and cylindrical co-ordinate system	BTL 5	Evaluate
4.	Explain the spherical and cylindrical co-ordinate system	BTL 1	Remember
5.	Given point P (-2, 6, 3) and \bar{A} =y $\bar{\iota}$ + (x+z) j express p and \bar{A} in cylindrical and spherical coordinates. Evaluate \bar{A} at P in the Cartesian, cylindrical and spherical system	BTL 4	Analyze
6.	Explain about the following i) Gradient ii) Divergence iii) Curl	BTL 2	Understand
7.	Determine the constant c such that the vector $F = (x + ay)i + (y + bz)j + (x + cz)k \text{ will be solenoidal.}$	BTL 2	Understand

UNIT II ELECTROSTATICS

Coulomb's Law in Vector Form – Definition of Electric Field Intensity –Electric Field due to discrete charges – Electric field due to continuous charge distribution - Electric Field due to charges distributed uniformly on an infinite line – Electric Field on the axis of a uniformly charged circular disc-Electric Scalar Potential – Relationship between potential and electric field - Potential due to infinite uniformly charged line – Potential due to electrical dipole - Electric Flux Density – Gauss Law – Proof of Gauss Law.

Part A (2 marks)				
Q.	Questions	BT Level	Competence	
No				
1	State coulomb's law.	BTL 1	Remember	
2	What are the different types of charges?	BTL 4	Analyze	
3	Define electric field intensity.	BTL 4	Analyze	
4	State Gauss Law.	BTL 1	Remember	
5	Define Electric scalar potential.	BTL 2	Understand	
6	State Electric flux density	BTL 1	Remember	
7	What is the capacitance of a coaxial cable.	BTL 4	Analyze	
8	Write the relationship between Potential and Electric field.	BTL 1	Remember	

9	Define dipole and dipole moment	BTL 1	Remember
10	Differentiate potential and potential difference.	BTL 2	Understand
	Part B (16 marks)		
Q.	Questions	BT Level	Competence
No			
1	State and explain coulomb's law.	BTL 2	Understand
2	A circular disc of radius 'a', m is charged uniformly with a charge density of σ C/m ² Find the electric field intensity at a point 'h', m from the disc along its axis.	BTL 2	Understand
3	Explain the Electric field due to charges distributed uniformly on an Infinite and Finite line	BTL 2	Understand
4	Explain about the applications of Gauss law	BTL 2	Understand
5	State and prove Gauss's law.	BTL 2	Understand
6	Define the potential difference and absolute potential. Give the relation between potential and field intensity.	BTL 2	Understand
7	What is dipole moment? Obtain expression for the potential and field due to an electric dipole.	BTL 1	Remember

UNIT III - MAGNETOSTATICS

Theories of magnetic field- Biot- Savart Law in vector form – Magnetic Field intensity due to a finite and infinite wire carrying a current I – Magnetic field intensity on the axis of a circular loop– Ampere's circuital law. Magnetic flux density – Lorentz Law of force – Force on a wire carrying a current I placed in a magnetic field – Torque on a loop carrying a current I – Magnetic moment – Magnetic Vector Potential.

Part A (2 marks)			
Q.	Questions	BT Level	Competence
No			-
1	State Biot–Savart's law.	BTL 4	Analyze
2	State Ampere circuital law.	BTL 1	Remember
3	State magnetic field intensity.	BTL 1	Remember
4	State Magnetic Flux density.	BTL 1	Remember
5	Write an expression of Lorentz law of force.	BTL 3	Apply
6	Define Magnetic Moment.	BTL 1	Remember

7	Distinguish magnetic scalar potential and magnetic vector	BTL 1	Remember
	potential.		
8	Define Magnetization.	BTL 1	Remember
	Part B (16 marks)		
Q. No	Questions	BT Level	Competence
1	State and Explain Biot-savart law.	BTL 3	Apply
2	Explain about Magnetic Field intensity due to a finite and infinite wire carrying a current I.	BTL 3	Apply
3	Explain about Magnetic field intensity on the axis of a circular loop.	BTL 2	Understand
4	Derive an expression for Lorentz law of force.	BTL 2	Understand
5	Derive the force equation on a wire carrying a current I placed in a magnetic field.	BTL 2	Understand
6	Two wires carrying currents in the same direction of 5000 A and 10000 A are placed with their axes 5 cm apart. Calculate the force between them.	BTL 2	Understand

UNIT IV ELECTRIC AND MAGNETIC FIELDS IN MATERIALS

Poisson's and Laplace's equation – Electric field in free space, conductors, dielectric -Dielectric polarization – Capacitance- Dielectric strength - Electric field in multiple dielectrics – Electrostatic energy and energy density – Boundary conditions for electric fields. Definition of Inductance – Inductance of loops and solenoids – Definition of mutual inductance – simple examples. Energy density in magnetic fields –magnetic boundary conditions.

Part A (2 marks)			
Q.	Questions	BT Level	Competence
No			
1	Write an expression for Poisson's and Laplace's equation.	BTL 1	Remember
2	What are the properties of electric field in conductor and	BTL 1	Remember
	dielectrics.		
3	Define Dielectric Polarization	BTL 3	Apply
4	Define Capacitance.	BTL 1	Remember
5	Define Dielectric strength.	BTL 1	Remember
6	Define Inductance	BTL 1	Remember
7	Define Mutual Inductance.	BTL 3	Apply

8	What is magnetic boundary condition?	BTL 1	Remember
9	Write an expression for Electrostatic energy and energy density.	BTL 1	Remember
10	Write the boundary conditions for electric field.	BTL 1	Remember
	Part B (16 marks)		
Q. No	Questions	BT Level	Competence
1	Discuss Electric field in free space, dielectric and in conductor.	BTL 4	Analyze
2	Derive the Poisson's and Laplace 's equation.	BTL 1	Remember
3	Derive an expression for capacitance with two dielectric media.	BTL 1	Remember
4	Derive an expression for electrostatic energy and energy density in a electric field.	BTL 2	Understand
5	Derive the magnetic boundary conditions at the interface of two different magnetic media.	BTL 1	Remember
6	Derive the boundary conditions in a electric field.	BTL 1	Remember
7	Calculate B due to a long solenoid and a thin toroid.	BTL 2	Understand

UNIT V - ELECTRODYNAMIC FIELDS AND ELECTROMAGNETIC WAVES

Displacement current - Maxwell's equations (differential and integral forms) -. Electro Magnetic Wave equations - Uniform plane waves -Wave parameters; velocity, intrinsic impedance, propagation constant -Waves in free space, lossy and lossless dielectrics, conductors-skin depth, Poynting Theorem.

Part A (2 marks)			
Q. No	Questions	BT Level	Competence
1	Define displacement current.	BTL 1	Remember
2	Write down the wave equation for E and H in a non-dissipative (free space) medium.	BTL 2	Understand
3	What are the properties of uniform plane wave?	BTL 1	Remember
4	Define intrinsic impedance.	BTL 1	Remember
5	Define Poynting theorem.	BTL 1	Remember
6	Calculate the skin depth and wave velocity at 2 MHz in Aluminum with conductivity 40 MS/m and μ_r =1.	BTL 1	Remember

7	Define skin depth.	BTL 1	Remember
8	Find the velocity of a plane wave in a lossless medium	BTL 2	Understand
	having $\mu=10$, $\epsilon_r=20$.		
9	What do you mean by "depth of penetration"?	BTL 3	Apply
10	For a lossy dielectric material having μ_r =1, ϵ_r =48, σ =20	BTL 1	Remember
	s/m. Calculate the propagation constant at a frequency of		
	16 GHz.		
11	What is the velocity of electromagnetic wave in free space	BTL 3	Apply
	and in lossless dielectric?		
	Part B (16 marks)		
Q. No	Questions	BT Level	Competence
1	Summarize Maxwell's equation for time varying fields in	BTL 2	Understand
	integral and differential form.		
2	What do you meant by displacement current? Write down	BTL 4	Analyze
	the expression for the total current density.		
3	State poynting's theorem and explain its physical significance.	BTL 1	Remember
4	Explain in detail on what happened when the wave is	BTL 1	Remember
	normally incident on dielectric medium.		
5	Derive the wave equation for a conducting medium.	BTL 1	Remember
6	Explain the electromagnetic wave propagation in	BTL 2	Understand
	i) lossless dielectrics		
	ii) free space		
	iii) good conductor		