Publicly shared
Author: kenjibaheux@chromium.org, toyoshim@chromium.org

Reload, reloaded

Background

Chrome is apparently performing a lot of unwarranted revalidations. While it might not explain it

all, we found out a couple of contributing factors.

As we looked into the code to find more causes, we couldn’t help but noticed the multitude of
Reloading flavors:

Normal navigation: regular Load
Same URL navigation: Load validating main resource
Pull to refresh: Load validating all resources
Reload button: Load validating all resources
Shift/Ctrl-click the Reload button (OS specific): Load bypassing cache
F5, ctrl+r/cmd+r (OS specific): Load validating all resources
Shift + [ctrl+r / cmd+r / F5] (OS specific): Load bypassing cache
Third mode in Reload’s context menu when DevTools is opened: clear cache then Load
bypassing cache
Tab recovery:
o Load preferring cache on Android
o Load validating all resources on Desktop
Reopen closed tab: Load preferring cache

The biqg picture of loading behaviors

() referrer | form | update
Blink update | reset | history main frame resource
location.reload frame yes yes no validate cache validate cache
history.go(0) location.reload
history.go(n!=0) History Navigation
KeyboardEvent History Navigation
HTMLANnchorElement frame yes - yes protocol protocol
InspectorPageAgent::reload(ignore
cache) page no yes no validate/bypass validate/ignore
Inspector internal reload - - - - only from cache only from cache
Content/Chrome
Reload page no yes no validate cache validate cache

mailto:kenjibaheux@chromium.org
mailto:toyoshim@chromium.org
https://bugs.chromium.org/p/chromium/issues/detail?id=505048
https://bugs.chromium.org/p/chromium/issues/detail?id=309693
https://bugs.chromium.org/p/chromium/issues/detail?id=558829

Bypassing-Reload page | no | yes | no | bypass cache bypass cache
Context Menu Reload / Ctrl+R Super-Reload

Context Menu per-Frame Reload frame no yes no validate cache validate cache
Pull to refresh (expected) page no yes no validate cache protocol cache
History Navigations (GET) page no no no preferring cache | preferring cache
History Navigations (POST) page no no no only from cache only from cache
Omnibox - Enter page yes yes no validate cache protocol cache
Tab Restore History Navigation

ContentSettings update Reload

NetErrorHelper (auto redirect from

dinosaur) Reload

Use cases, current state, desired state

| believe that there are only 2 user facing use cases:
1. | want to see the latest content
2. | want to fix this page

Here is an overview of what the current state means for these use cases and what | think we
should aim for:

Legend Requirements
.F“ fora . ! A A. Effectiveness
given use
caseand pocr ok meh no C. Speed
connectivity .
condition © . A x D. Efficiency

Connectivity condition

slow or
regular !

flaky
Controls as they currently exists
Use cases and prioritized needs Desktop Common Mobile
Hard Reload Reload Same URL nav. Pull to refresh
| want to see the latest content (A,C,D) % / % A |/ A o I (@) A I A
| want to fix this page (A) . ! A A ! A x) x A / A
"throw it all" x flaky => "revalidate it all" x slow/flaky => "revalidate it all" x slow/
A problematic? A, B, C problematic flaky => A,B, C
problematic
Controls as they should be
Use cases and prioritized needs Desktop Common Mobile
Hard Reload Reload Same URL nav. Pull to refresh
I want to see the latest content (A,C,D) x I x © | © © | O © | ©
| want to fix this page (A) . / A x ! % x I x % / x
Need a solution on crbug/600636 crbug/558829

mobile (owner: kbx)

Observations about the current state

The “revalidate it all” approach used for pull to refresh and reload is suboptimal for the use case
it's intended for (i.e. “l want to see the latest content”). Especially on slow/flaky connections, we
end up revalidating perfectly fine assets. This leads to slow page loads in the best case
scenario or failed page loads in the worst case scenario (e.g. timed out, connection drops).

The “throw it all” approach used for Hard reload might be problematic on a flaky connection. It's
unclear how much of an issue this is in practice but a workaround probably consists of hard
reloads + reload combos.

Proposal

Keep only 2 user facing reload behavior:
e [oad validating main resource (i.e. validate the main resource + regular Load)
e Load bypassing cache

Align system reloads (e.g. tab recovery, reopen closed tab) to one behavior:
e [oad preferring cache

Same URL navigation: Load validating main resource
Shift/Ctrl-click the Reload button, Shift + [ctrl+r / cmd+R / F5]: Load bypassing cache
Third mode in Reload’s context menu when DevTools is opened: cache cleared then
Load bypassing cache

e Reopen closed tab: Load preferring cache

Pull to refresh: Load validating main resource

Reload button, F5, ctrl/cmd+R: Load validating main resource
Tab recovery: Load preferring cache on all platforms
Introduce UX for Load bypassing cache on mobile

NetErrorHelper (auto redirect from the Offline Dinosaur): change it from Load validating all
resources to:

e [oad?

e [oad validating main resource?

e [oad bypassing cache?

https://bugs.chromium.org/p/chromium/issues/detail?id=558829
https://bugs.chromium.org/p/chromium/issues/detail?id=600636
https://bugs.chromium.org/p/chromium/issues/detail?id=309693

ContentSettingsUpdate: change it from Load validating all resources to:
e [oad?
e [oad validating main resource?
e [oad bypassing cache?

JS reload()
e current behavior appears to be a Super reload but MDN says that the browser may load
from the Cache.
e MDN also mentions a (non-standard?) parameter to specify the behavior:
o When the parameter is true, it means that the browser must “load from the
Server” which | interpret as a hard reload.

o we currently don’t support the parameter.

Behaviors in other browsers

e |Internet Explorer’s behavior
e Others TODO

Measuring success

Changing the longstanding behavior of Reload is not without risk. It's possible that some
websites have come to rely on said behavior as part of their intended user-experience. For
instance, one could imagine a website with a dynamically-updated image that's short-term
cacheable. Or maybe a rotating logo and the user wants to cycle through them. Or perhaps an
article with short-term cacheable assets that are frequently updated in the context of live
blogging an event.

There are obviously better ways to achieve the same effect (e.g. a live blogging service) but
these don’t apply to websites that are still used but not updated.

Metrics

We expect to see the following improvements:
e Fast Loading user experience (observable via Page Load Time metrics)

https://support.google.com/chrome/answer/114662?hl=en
https://developer.mozilla.org/en-US/docs/Web/API/Location/reload
https://bugs.chromium.org/p/chromium/issues/detail?id=578941
https://blogs.msdn.microsoft.com/ieinternals/2010/07/08/understanding-conditional-requests-and-refresh/

e Data savings (observable via Net metrics)
e Power consumption savings (not sure how much to expect; no metrics?)

In the case where the new reload behavior didn’t fulfill the user’s desire, we expect to see an
increase of reload actions, in particular fast-follow reloads. It's probably risky to only measure
the number of reload actions because if reload becomes significantly faster, it might be used

more lightly than it was before.

Strawman:
e Histogram showing the # of reloads triggered per document
e Histogram showing the time between subsequent reloads per document

In addition, we can measure the underlying impact of forced revalidations, or the lack thereof:
e Histogram showing the outcome of a force revalidation via a classic reload:
o not updated
o updated

For picking an adequate risk mitigation option:
e Histogram showing the max-age of assets that were updated as the outcome of a force
revalidation via a classic reload.

Caveat: this doesn't tell us if the updated resource mattered to the user, hence the need for a
metric that measure user frustration as explained above.

Risk mitigation options

Depending on what we learn from the behavior change outlined in the first part of this
document, we might need to make some adjustments to mitigate risk.

Async revalidations

Instead of performing regular validations that hurt the loading user experience, opt for async
validations.

Pros:

a subsequent reload will use fresh assets, therefore fixing any user frustration.
Improvements on the Loading user experience are maintained

Cons:

e Improvements on data usage (for users and webmasters) are gone.
e Improvements on power consumption are gone.

Key on long max-age

Assume that assets with a relatively long max-age are unlikely to be updated.

Pros:
e simplicity

Cons:
e Improvements to the Loading user experience are largely gone.
e Improvements on data usage (for users and webmasters) are largely gone.
e Improvements on power consumption are largely gone.

UX solutions

Currently, there is no hard reload affordance on Chrome for Android.
Beside the mitigation risk benefits, there are situations for which a hard reload comes handy.

Pros:
e Fix all the issues
e No compromises on the regular reload

Cons:
e Discoverability issues (esp. on Mobile)

Change the behavior of a subsequent reload to help the user:
e Reload: as outlined in the document
e First fast-follow subsequent reload: reload with validations
e Second fast-follow subsequent reload: hard reload

Pros:

Eventually, fix all the issues
No compromises on the regular reload

Cons:

e Defining “fast-follow” might be tricky: when the page is seemingly stuck loading, users
tend to perform a subsequent reload for which a hard reload or even extra validations
would be unwelcomed.

e Perhaps, only consider subsequent reloads that happen after the first meaningful paint
(=> dependency).

e Complexity => user not in control

Variation
Change the behavior of a subsequent reload to help the user:
e Reload: as outlined in the document
e First subsequent reload: reload with async validations
e Second subsequent reload: as outlined in the document

	Reload, reloaded
	Background
	Use cases, current state, desired state
	Observations about the current state
	Proposal
	Unchanged
	Changes
	Unclear

	Behaviors in other browsers

	Measuring success
	Metrics
	Benefits
	User frustration
	Underlying impact

	Risk mitigation options
	Async revalidations
	Key on long max-age
	UX solutions
	Offer a hard reload UX affordance on all platforms
	Piggy-back on user frustration to fix things

