

ANAND INSTITUTE OF HIGHER TECHNOLOGY

OLD MAHABALIPURAM ROAD, KALASALINGAM NAGAR

KAZHIPATTUR, NEAR CHENNAI-603 103

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LAB MANUAL

Subject Code​ : CS2405

Subject​ Name : OBJECT ORIENTED PROGRAMMING LABORATORY

Degree​ : B.E

Branch​ : COMPUTER SCIENCE AND ENGINEERING

Year​ : II

Semester​ : III

Regulation​ : 2024

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

INDEX

EX.NO TITLE PAGE NO

1(a) Sequential search 1

1(b) Binary search 4

1(c) Sorting algorithms-Selection Sort 8

1(d) Quadratic sorting algorithm-Insertion Sort 11

2(a) Stack 14

2(b) Queue 17

3 Generating pay slips for the employees
20

4 Finding Area of Different Shapes Using Abstract Class
26

5 Finding Area of Different Shapes Using Interface
30

6 User defined exception handling.
34

7 Multi-threaded application
38

8 File Handling
42

9 Finding Maximum and Minimum using Generic Classes
46

10 Applications using JavaFX controls, layouts and menus.
49

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

l OMoARcPSD|283 59 27

Aim:

To write a Java program to solve problems by using Sequential Search.

Algorithm:

Step1: start
Step 2: Get the array elements. Step 3:
Traverse the array.
Step 4: Match the key element with array element.
Step 5: If key element is found, return the index position of the array element. Step 6:
If key element is not found, print element not found message.
Step 7: stop

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM

 //Exno:1(a) Sequential search​
import java.util.Scanner;
class LinearSearch
{
public static void main(String[] args)
{
int c,n,search,array[];
Scanner in = new Scanner(System.in);
System.out.println("Enter number of elements");
n=in.nextInt();
array=new int[n];
System.out.println("Enter those “ + n + “ elements");
for(c=0;c<n;c++)
array[c]=in.nextInt();
System.out.println("Enter value to find");
search=in.nextInt();
for(c=0;c<n;c++)
{
if(array[c]==search)
{
System.out.println(search + " is present at location " + (c + 1) + "."); break;
}
}
if(c==n)
System.out.println(search + " isn’t present in array.");
}
}

Output:
javac LinearSearch.java java
LinearSearch
Enter number of elements 5 Enter
those 5 elements 3
5
7
8
10
Enter value to find 8
8 is present at location 4.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Thus the Java application to solve the problems by using Sequential Search was developed

successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To write a Java program to solve problems by using Binary Search.

Algorithm:

Step1: Start
Step 2: Get the array elements.
Step 3: Calculate the mid element of the collection. Step 4:
Compare the key items with the mid element.
Step 5: If key item < mid element, then the key is in the upper half of the collection. Hence you need

search in the upper half (mid +1).
Step 6: Else if key item = middle element, then we return the mid index position for the key found.
Step 7: Else key item > mid element, then the key lies in the lower half of the collection. Thus repeat

binary search on the lower (right) half of the collection.
Step 8: Stop

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM
//Exno:1(b) Binary search
import java.util.Scanner; class
BinarySearchExample
{
public static void main(String args[])
{
int counter, num, item, array[], first, last, middle;
Scanner input = new Scanner(System.in);
System.out.println("Enter number of elements:"); num
= input.nextInt();
array = new int[num];
System.out.println("Enter " + num + " integers"); for
(counter = 0; counter < num; counter++) array[counter]
= input.nextInt(); System.out.println("Enter the search
value:"); item = input.nextInt();
first = 0;
last = num - 1;
middle = (first + last)/2; while
(first <= last)
{
if (array[middle] < item) first =
middle + 1;

else if(array[middle] == item)
{
System.out.println(item + " found at location " + (middle + 1) + "."); break;
}
else
{
last = middle - 1;
}
middle = (first + last)/2;
}
if (first> last)
System.out.println(item + " is not found.\n");
}
}

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Output:
javac BinarySearchExample.java java
BinarySearchExample Enter number
of elements:
5
Enter 5 integers
8
9
12
15
16
Enter the search value: 9
9 found at location 2.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:

Thus the Java application to solve the problems by using Binary Search was developed
successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To write a Java program to solve problems by using Selection Sort.

Algorithm:

Step 1: Start
Step 2: Initialize minimum value (min_index) to location 0.
Step 3: Traverse the array to find the minimum element in the array.
Step 4: While traversing if any element smaller than min_index is found then swap both the

values.
Step 5: Then, increment min_index to point to the next element. Step
6: Repeat until the array is sorted.
Step 7: Stop

PROGRAM

//Exno:1(c) Selection sort import
java.util.Scanner; public class
selectionsort
{
public static void main(String args[])
{
int size, i, j, temp;
int arr[] = new int[50];
Scanner sc = new Scanner(System.in);
System.out.print("Enter Array Size : "); size =
sc.nextInt();
System.out.print("Enter Array Elements : \n");
for(i=0; i<size; i++)
{
arr[i] = sc.nextInt();
}
for(i=0; i<size; i++)
{for(j=i+1; j<size; j++)
{
if(arr[i] >arr[j])
{

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}}
System.out.print("sorted array >>\n");
for(i=0; i<size; i++)
{
System.out.print(arr[i]+ " ");
}}}
Output:
javac selectionsort.java
java​ selectionsort
Enter Array Size : 6 Enter Array Elements : 7
2
9
4
6
3
sorted array >> 2 3 4 6 7 9

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:
Thus the java program for selection sort was developed and the output was verified successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:
To write a Java program to solve problems by using Insertion Sort.

Algorithm:

Step1: Start
Step 2: Get the elements
Step 3: If the element is the first element, assume that it is already sorted. Step 4:
Pick the next element, and store it separately in a key.
Step 5: Now, compare the element with all elements in the sorted array.
Step 6: If the element in the sorted array is smaller than the current element, then move to the next

element. Else, shift greater elements in the array towards the right.
Step 7: Insert the value.
Step 8: Repeat until the array is sorted. Step 9:
Stop

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Engineering

PROGRAM

 //Exno:1(d) Insertion sort​
import java.util.Scanner;
public class InsertionSort
{
public static void main(String[] args)
{
int n, i, j, element;
Scanner scan = new Scanner(System.in);
System.out.print("Enter the Size of Array: "); n =
scan.nextInt();
int[] arr = new int[n]; System.out.print("Enter "
+n+ " Elements: "); for(i=0; i<n; i++)
arr[i] = scan.nextInt();
for(i=1; i<n; i++)
{
element = arr[i];
for(j=(i-1); j>=0 &&arr[j]>element; j--)
arr[j+1] = arr[j];
arr[j+1] = element;
}
System.out.println("\nThe new sorted array is: "); for(i=0; i<n; i++)
System.out.print(arr[i]+ " ");
}
}

Output:
javac InsertionSort.java
java​ InsertionSort
Enter the Size of Array: 6 Enter 6 Elements: 3
6
9
7
4
2
The new sorted array is: 2 3
4 6 7 9

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Thus the java program for insertion sort was developed and the output was verified successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:
To Develop stack data structures using classes and objects.

Algorithm:
The stack supports the following operations:

1.​ push inserts an item at the top of the stack (i.e., above its current top element).
2.​ pop removes the object at the top of the stack and returns that object from the

function. The stack size will be decremented by one.
3.​ isEmpty tests if the stack is empty or not.
4.​ isFull tests if the stack is full or not.
5.​ peek returns the object at the top of the stack without removing it from the stack or

modifying the stack in any way.
6.​ size returns the total number of elements present in the stack.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM

//Exno:2(a)Stack import
java.util.Stack; class Main
{
public static void main(String[] args)
{
Stack<String> stack = new Stack<String>();

stack.push("A"); // Insert `A` into the stack
stack.push("B"); // Insert `B` into the stack
stack.push("C"); // Insert `C` into the stack
stack.push("D"); // Insert `D` into the stack

// prints the top of the stack (`D`) System.out.println("The top
element is " + stack.peek());

stack.pop();​ // removing the top element (`D`)
stack.pop();​ // removing the next top (`C)

// prints the top of the stack (`B`) System.out.println("The top
element is " + stack.peek());

// returns the total number of elements present in the stack System.out.println("The
stack size is " + stack.size());

// check if the stack is empty if
(stack.empty()) {
System.out.println("The stack is empty");
}
else {
System.out.println("The stack is not empty");
}
}
}

Output
The top element is D The
top element is B The stack
size is 2 The stack is not

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

empty

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

l OMoARcPSD|283 59 27

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:
Thus the Java program for stack data structure using classes and objects was developed and

the output was verified successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To develop QUEUE data structures using classes and objects.

Algorithm:

The queue supports the following core operations:

1.​ Enqueue: Inserts an item at the rear of the queue.
2.​ Dequeue: Removes the object from the front of the queue and returns it, thereby
decrementing queue size by one.
3.​ Peek: Returns the object at the front of the queue without removing it.
4.​ IsEmpty: Tests if the queue is empty or not.
5.​ Size: Returns the total number of elements present in the queue.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM

 //Exno:2(b)Queue​
import java.util.LinkedList;
import java.util.Queue; public
class QueueExample
{
public static void main(String[] args)
{
Queue<Integer> q= new LinkedList<>();

// Adds elements {0, 1, 2, 3, 4} to
// the queue
for(int i = 0; i< 5; i++)
q.add(i);

// Display contents of the queue.
System.out.println("Elements of queue " + q);

// To remove the head of queue. int
removedele = q.remove();
System.out.println("removed element-"+ removedele);
System.out.println(q);
// To view the head of queue int
head = q.peek();
System.out.println("head of queue="+head);
// Rest all methods of collection
// interface like size and contains
// can be used with this
// implementation. int
size = q.size();

System.out.println("Size of queue="+size);
}
}
Output
javac QueueExample.java
java QueueExample
Elements of queue [0, 1, 2, 3, 4]
removed element-0
[1, 2, 3, 4]

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

head of queue=1
Size of queue=4

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

l OMoARcPSD|283 59 27

Result:

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Thus the Java program for Queue data structure using classes and objects was developed and

the output was verified successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

l OM oARc PSD| 2835927

ExNo.3​ GENERATINGPAY SLIPS FOR THE EMPLOYEES

Date:

Aim:

To develop a java application for generating pay slips for the employees with their gross
and net salary.

Algorithm:
Step 1. Start
Step 2. Get the information about the employee – Employee name. Employee id, address, mail id and

mobile number
Step 3:Using function calculate the salary

Grosssalary=(0.97f*bpay)+(0.10f*bpay)+(0.12f*bpay)+(0.001f*bpay)+bpay;
Netsalary=grosssalary-((0.12f*bpay)+(0.001f*bpay)

Step 4:Using switch case, get the choice (Professor, Associate Professor, Assistant Professor,Programmer)
and the required function called.

Step 6:Using function calculate the salary by the input as bpay. Step
7:Choose the employee and print the details.
Step 8:Stop.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM
//Exno:3 GENERATING PAY SLIPS FOR THE EMPLOYEE
import java.util.*;
import java.io.*; class
Employee
{
int id;
float grosssalary, netsalary,bpay; String
name, address, mail, mno; Scanner get =
new Scanner(System.in); Employee()
{
System.out.println("Enter Name of the Employee:"); name =
get.next();
System.out.println("Enter id:"); id =
get.nextInt();
System.out.println("Enter Address of the Employee:");
address = get.next();
System.out.println("Enter mailid of the Employee:"); mail =
get.next();

System.out.println("Enter mobile no. of the Employee:"); mno
= get.next();
}
void salary()
{
grosssalary= (0.97f*bpay)+(0.10f*bpay)+(0.12f*bpay) + (0.001f*bpay)+bpay;
netsalary= grosssalary-((0.12f*bpay) + (0.001f*bpay));
}
void display()
{
System.out.println("Employee Name: "+name);
System.out.println("ID​ : "+id);
System.out.println("Mail Id​ ​ : "+mail);
System.out.println("Address​ ​ ​ : "+address);
System.out.println("Mobile No. : "+mno);
System.out.println("Gross Salary : "+grosssalary);
System.out.println("Net Salary : "+netsalary);
}
}
class Programmer extends Employee
{

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Programmer()
{

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

System.out.println("Enter Basic Pay:"); bpay
= get.nextFloat();
salary();
}
void display()
{
System.out.println("\n ==============\n Programmer\n ================\n");
super.display();
}
}
class AssistantProfessor extends Employee
{
AssistantProfessor()
{
System.out.println("Enter Basic Pay:"); bpay
= get.nextFloat();
salary();
}
void display()
{
System.out.println(" ===================\n Assistant Professor\n=========\n");
super.display();
}
}
class AssociateProfessor extends Employee
{
AssociateProfessor()
{
System.out.println("Enter Basic Pay:"); bpay
= get.nextFloat();
salary();
}
void display()
{
System.out.println(" ===============\n Associate Professor\n============\n");
super.display();
}
}
class Professor extends Employee
{

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Professor()
{
System.out.println("Enter Basic Pay:");

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

bpay = get.nextFloat();
salary();
}
void display()
{
System.out.println(" =============\n Professor\n =============\n");
super.display();
}
}
class Employees
{
public static void main(String args[]) throws Exception
{
BufferedReaderbr = new BufferedReader(new InputStreamReader(System.in));
System.out.println(" -------------\n PAY SLIPS \n​ \n 1. Professor \n 2. Associate
Professor\n 3. Assistant Professor\n 4. Programmer");
System.out.printf("\n Choose the type of Employee: "); int
choice=Integer.parseInt(br.readLine()); switch(choice)
{
case 1:
System.out.println(" ============\n Enter Professor Details \n========"+"\n"); Professor
ob1 = new Professor();
ob1.display(); break;

case 2:
System.out.println(" =========\n Enter Associate Professor Details \n ====="+"\n");
AssociateProfessor ob2 = new AssociateProfessor();
ob2.display(); break;
case 3:

System.out.println(" ========\n Enter Assistant Professor Details\n ======="+"\n");
AssistantProfessor ob3 = new AssistantProfessor();
ob3.display(); break;

case 4:
System.out.println(" ========\n Enter Programmer Details \n=========="+"\n");
Programmer ob4 = new Programmer();
ob4.display(); break;
default:

System.out.println("Enter correct choice");
break;
}

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

}
}

OUTPUT
D:\demo>javac Employees.java D:\demo>java
Employees

PAY SLIPS

1.​ Professor
2.​ AssociateProfessor
3.​ Assistant Professor
4.​ Programmer

Choose the type of Employee: 1
=========================
Enter Professor Details
=========================

Enter Name of the Employee: Dina Enter
id:125
Enter Address of the Employee: nagarkoil Enter
mailid of the Employee: din@gmail.com Enter
mobile no. of the Employee: 9445861253 Enter
Basic Pay: 20000

=============
Professor
=============
Employee Name: Dina ID​
125

Mail Id: din@gmail.com Address​ :
nagarkoil Mobile No. : 9445861253
Gross Salary : 43820.0 Net
Salary : 41400.0 D:\demo>

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

mailto:din@gmail.com
mailto:din@gmail.com

Result:

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Thus the java application for generating pay slips for the employees with their gross and
netsalary was developed successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To write a JAVA program for finding area of different shapes using abstract class concept.

Algorithm:

Step 1:Start.
Step 2: Create an abstract class named Shape that contains two integers and an empty method named

print Area()
Step 3:Get the value of length and breadth of rectangle.
Step 4:Calculate the area of rectangle using area=length * breadth Step
5:Print the area of rectangle.
Step 6:Get the value of length anf height of triangle.
Step 7:Calculate the area of triangle using area = 0.5 * length * height Step
8:Print the area of circle.
Step 9:Get the value of radius.
Step 10:Calculate the area of circle using area =Math.PI * radius * radius. Step
11:Print the area of circle.
Step 12:Stop.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM

//Exno:4 Finding Area of Different Shapes Using Abstract Class
import java.util.*;
abstract class Shape
{
int length = 0; int
height = 0;
public abstract void printArea();
}
class Rectangle extends Shape
{
int area = 0;
public void printArea()
{
System.out.println("\n Rectangle\n​ ");
Scanner input = new Scanner(System.in);
System.out.printf("Enter Length of Rectangle : ");

this.length = input.nextInt(); System.out.printf("Enter
Breadth of Rectangle : "); this.height = input.nextInt();
this.area = this.length*this.height;
System.out.println("Area of the Rectangle is : " + this.area);
}
}
class Triangle extends Shape
{
double area = 0.0; public
void printArea()
{
System.out.println("\n Triangle\n​ ");
Scanner input = new Scanner(System.in);
System.out.printf("Enter Length of Triangle : ");

this.length = input.nextInt(); System.out.printf("Enter
Height of Triangle : "); this.height = input.nextInt();
this.area = 0.5 * this.length * this.height; System.out.println("Area
of the Triangle is : " + this.area);
}
}
class Circle extends Shape
{

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

double area = 0.0;

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

public void printArea()

 {​ ​
System.out.println("\n Circle\n​ ");
Scanner input = new Scanner(System.in);
System.out.printf("Enter Radius of Circle : "); this.length =
input.nextInt();
this.area = Math.PI * this.length * this.length;
System.out.println("Area of the Circle is : "+this.area);
}

}
class Absclass
{
public static void main(String[] args)
{
System.out.println("\n​ \nFinding Area\n");

Shape rt = new Rectangle();
rt.printArea();

Shape tr = new Triangle();
tr.printArea();
Shape cr = new Circle();
cr.printArea();
}
}
OUTPUT
D:\demo>javac Absclass.java D:\demo>java
Absclass

Finding Area Rectangle
Enter Length of Rectangle : 20
Enter Breadth of Rectangle : 10
Area of the Rectangle is : 200

Triangle

Enter Length of Triangle : 10
Enter Height of Triangle​ 20
Area of the Triangle is : 100.0

Circle

Enter Radius of Circle : 5
Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Area of the Circle is : 78.53981633974483

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Department of Computer Science and Engineering

l OM oARc PSD| 2835927

Result:

Thus the JAVA program for finding

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

area of different shapes using abstract
class concept was written, executed
and the output was verified
successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

l OM oARc PSD| 2835927

Aim:

To write a java program for finding area of different shapes using interface concept.

Algorithm:

Step 1: Start.
Step 2: Create an interface named Shape that contains an empty method named print Area() Step 3:
Get the value of length and breadth of rectangle.
Step 4: Calculate the area of rectangle using area=length * breadth Step 5:
Print the area of rectangle.
Step 6: Get the value of length and height of triangle.
Step 7: Calculate the area of triangle using area = 0.5 * length * height Step 8:
Print the area of circle.
Step 9: Get the value of radius.
Step 10: Calculate the area of circle using area =Math.PI * radius * radius. Step 11:
Print the area of circle.
Step 12: Stop.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM

//Exno:5 Finding Area of Different Shapes Using Interface
import java.util.*;
interface Shape
{
void printArea();
}
class Rectangle implements Shape
{
int area, length,height; public
void printArea()
{
System.out.println("\n Rectangle\n"); Scanner
input = new Scanner(System.in);
System.out.printf("Enter Length of Rectangle : ");
this.length = input.nextInt(); System.out.printf("Enter
Breadth of Rectangle : "); this.height = input.nextInt();
this.area = this.length*this.height;
System.out.println("Area of the Rectangle is : " + this.area);
}
}
class Triangle implements Shape
{
double area = 0.0; int
length,height ;
public void printArea()
{
System.out.println("\n Triangle\n"); Scanner
input = new Scanner(System.in);
System.out.printf("Enter Length of Triangle : ");
this.length = input.nextInt(); System.out.printf("Enter
Height of Triangle : "); this.height = input.nextInt();
this.area = 0.5 * this.length * this.height; System.out.println("Area
of the Triangle is : " + this.area);
}
}
class Circle implements Shape
{
double area = 0.0; int

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

length;

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

public void printArea()

{

System.out.println("\n Circle\n​ "); Scanner
input = new Scanner(System.in);
System.out.printf("Enter Radius of Circle : ");
this.length = input.nextInt();
this.area = Math.PI * this.length * this.length;
System.out.println("Area of the Circle is : "+this.area);

}
}
class demoforinterface
{
public static void main(String[] args)
{
System.out.println("\n​ \nFinding Area\n");
Shape rt = new Rectangle();
rt.printArea();
Shape tr = new Triangle();
tr.printArea();

Shape cr = new Circle();
cr.printArea();
}
}

OUTPUT
D:\demo>javac demoforinterface.java
D:\demo>java demoforinterface

Finding Area Rectangle
Enter Length of Rectangle : 3 Enter
Breadth of Rectangle : 2 Area of the
Rectangle is : 6 Triangle
Enter Length of Triangle : 6 Enter
Height of Triangle : 9 Area of the
Triangle is : 27.0 Circle
Enter Radius of Circle : 5
Area of the Circle is : 78.53981633974483

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

l OM oARc PSD| 2835927

Result:

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Thus the JAVA program for finding area of different shapes using interface concept was
written, executed and the output was verified successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To write a Java program to implement user defined exception handling.

Algorithm:

Step1: Start.
Step2: Create a class MyException that extends Exception class Step
3: Get an input
Step4: Check whether the input is greater than or equal to zero.

a)​If yes, print the number.
b)​ Otherwise, handle the exception using try-catch block

Step 5: Stop.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM

//Exno:6 User defined exception handling
import java.io.*; import
java.util.*;
class MyException extends Exception
{
MyException(String message)
{
super(message);
}
}
class demo
{
public static void main(String a[])
{
Scanner s=new Scanner(System.in); try
{
System.out.println ("Enter a positive number:"); int
no=s.nextInt();
if(no<0)
{
throw new MyException("Number must be positive");
}
System.out.println("Number:"+no);
}
catch(MyException e)
{

System.out.println("Caught the Exception"); System.out.println(e.getMessage());
System.out.println ("Exception Handled​ !");
}
catch(Exception e)
{
System.out.println("Enter numbers...Exception Handled!");
}
}
}

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

OUTPUT RUN1
Enter a positive number:
-6
Caught the Exception
Number must be positive
Exception Handled​ !
RUN2
Enter a positive number: 6
Number:6

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:

Thus the Java program to implement user defined exception handling was implemented and the

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

output was verified successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To write a java program that implements a multi-threaded application that has three threads.
First thread generates a random integer every 1 second and if the value is even, second thread computes the
square of the number and prints. If the value is odd, the third thread will print the value of cube of the
number.

Algorithm:

Step1:Start.
Step2:Create three classes.Two classes (even,odd) implements Runnable and one thread extends Thread

Class.
Step3:First thread generates a random integer every 1 second.
Step4: The integer value is even, these condition thread computes the square of the number and prints.
Step 5: If the value is odd, the third thread will print the value of cube of the number. Step6: Stop

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM
//Exno:7 Multi-threaded application
import java.util.*;
class even implements Runnable
{
public int x; public
even(int x)
{
this.x= x;
}
public void run()
{
System.out.println("Thread1:"+x+"is EVEN and Square of"+x+"is:"+x*x);
}
}
class odd implements Runnable
{
public int x; public
odd(int x)

{
this.x= x;
}

public void run()
{
System.out.println("Thread2:"+x+"is ODD and Cube of"+x+"is:"+x*x*x);
}
}
class A extends Thread
{
public void run()
{
int num=0;
Random r=new Random(); try
{
for(int i=0;i <5; i++)
{
num=r.nextInt(100);

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

System.out.println("Thread-1:GeneratedNumberis"+num); if
(num % 2 == 0)
{

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Thread t1=new Thread(new even(num));
t1.start();

 }​
else
{
Thread t2=new Thread(new odd(num));
t2.start();
}
//Thread.sleep(1000);
System.out.println("");
}
}
catch(Exception ex)
{
System.out.println(ex.getMessage());
}
}
}
public class ThreeThreads
{
public static void main(String[] args)
{
A x=new A();
x.start();
}
}

OUTPUT
Thread-1: Generated Number is 39
Thread-1: Generated Number is 48
Thread-1: Generated Number is 48
Thread-1: Generated Number is 67
Thread-1: Generated Number is 45
Thread2:48is ODD and Cube of 48 is:110592 Thread1:48is
EVEN and Square of 48 is:2304 Thread2:45is ODD and
Cube of 45 is:91125 Thread1:45is EVEN and Square of 45
is:2025 Thread1:48is EVEN and Square of 48 is:2304
Thread2:48is ODD and Cube of 48 is:110592 Thread2:39is
ODD and Cube of 39 is:59319 Thread2:67is ODD and
Cube of 67 is:300763 Thread1:67is EVEN and Square of

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

67 is:4489 Thread1:39is EVEN and Square of 39 is:1521

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Thus the java program that implements a multi-threaded application that has three threads was
written and the output was verified successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To write a Java program to perform file operations.

Algorithm:

Step 1:Start.
Step 2:Get the input as filename.
Step 3:If the filename exists, then

a)​Print the details about the file (Is File?, Is Directory?, Is Readable?, Is Writable?, Type,
Length of the file.

b)​ Otherwise, print “File does not exist”
Step 4:Stop.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM
//Exno:8 File Handling
import java.util.Scanner;
import java.io.File; import
java.io.*;
import java.util.*; class
Main
{
public static String getFileExtension(File f1)
{
String fileName = f1.getName();
if(fileName.lastIndexOf(".") != -1 && fileName.lastIndexOf(".") != 0) return
fileName.substring(fileName.lastIndexOf(".")+1);
else
return "Folder";
}
public static void main(String[] args)
{
Scanner input=new Scanner(System.in);
System.out.print("\nEnter the filename: ");
String s=input.nextLine();
File f1=new File(s);
if(f1.exists())

{
try
{

FileWriter myWriter = new FileWriter(f1);
myWriter.write("AIHT provides quality Education in Engineering and Higher Technology and
catering to the needs of the student community of Metropolitan city"); myWriter.close();
System.out.println("Successfully wrote to the file.");
Scanner myReader = new Scanner(f1);
while (myReader.hasNextLine())
{
String data = myReader.nextLine();

System.out.println("​ File content ");
System.out.println(data);
}
}

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

catch(Exception e)
{

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

System.out.println(e);
}

System.out.println("\nDETAILS ABOUT THE FILE");System.out.println("​ ");

System.out.println(" File exists in : "+f1.getAbsolutePath());
System.out.println("\n Is file?:"+f1.isFile()); System.out.println(" Is
Directory?​ :"+f1.isDirectory());
System.out.println("\n Is Readable?​ ​ :"+f1.canRead());
System.out.println(" Is Writable?​ :"+f1.canWrite());
System.out.println("\n Type :"+getFileExtension(f1));
System.out.println("\n Length of the File :"+f1.length()+" Bytes");
}
else
{
System.out.println("File does not exist");
}
}
}
OUTPUT:
Enter the filename: jj.txt Successfully wrote to the file.
----File content----
AIHT provides quality Education in Engineering and Higher Technology and catering to the
needs of the student community of Metropolitan city
DETAILS ABOUT THE FILE
File exists in : D:\ASB\jj.txt Is file? :true Is
Directory? :false
Is Readable?​ :true Is Writable? :true
Type :txt
Length of the File :140 Bytes

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:

Thus the Java program for reading a file name from the user and displaying the information

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

about the file was written and the output was verified successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To write a java program for finding the maximum and minimum value from the given
type of elements using a generic class.

Algorithm:

Step 1: Start.
Step 2: Create a class Myclass to implement generic class and generic methods. Step 3:
Get the set of values belonging to specific data type.
Step 4: Create the objects of the class to hold Integer,Character and Double values.
Step 5: Create the methods to compare the values and find the maximum value and minimum value

stored in the array.
Step 6: Invoke the methods with integer, character or double values.
Step 7: The maximum and minimum value of Integer ,character and double is displayed based on the

data type passed to the method.
Step 8: Stop.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Engineering

PROGRAM

//Exno:9 Finding Maximum and Minimum using Generic Classes

class MyClass<T extends Comparable<T>>
{
T[] vals;
MyClass(T[] obj)
{
vals = obj;
}
public T min()
{
T v = vals[0];
for(int i=1; i < vals.length; i++)
if(vals[i].compareTo(v) < 0)

v = vals[i]; return v;
}
public T max()
{
T v = vals[0];
for(int i=1; i < vals.length;i++)
if(vals[i].compareTo(v) > 0)
v = vals[i]; return v;

}
}
class gendemo
{
public static void main(String args[])
{
int i;
Integer inums[]={10,2,5,4,6,1}; Character
chs[]={'j','p','x','a','n','d'};
Double d[]={20.2,45.4,71.6,88.3,54.6,10.4};
MyClass<Integer> iob = new MyClass<Integer>(inums); MyClass<Character> cob
= new MyClass<Character>(chs); MyClass<Double>dob = new
MyClass<Double>(d); System.out.println("Max value in inums: " + iob.max());
System.out.println("Min value in inums: " + iob.min()); System.out.println("Max
value in chs: " + cob.max()); System.out.println("Min value in chs: " + cob.min());

47​ CS3381 Object Oriented Programming

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

System.out.println("Max value in d: " + dob.max());
System.out.println("Min value in d: " + dob.min());

}
}
OUTPUT:
Max value in inums: 10Min value in
inums: 1 Max value in chs: x Min
value in chs: a Max value in d: 88.3
Min value in d:
10.4

Result:

Thus the java program for finding the maximum and minimum value from the given type of
Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

elements was implemented using a generic class and executed successfully.

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Aim:

To write a java program to develop applications using JavaFX controls, layouts and menus.

Algorithm:
Step 1: Start
Step 2: Create a menu Button named “Technology”.
Step 3: Create necessary menu items and add it add it to the menu. Step 4:
Add the choice box to the scene.
Step 5: Set the stage and launch. Step
6: Stop

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

PROGRAM
//Exno:10 Applications using JavaFX controls, layouts and menus
import javafx.application.Application; import
javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.MenuButton; import
javafx.scene.control.MenuItem; import
javafx.scene.layout.HBox;
import javafx.stage.Stage;
public class MenuButtonExample extends Application
{
public void start(Stage stage)
{
MenuButton menu = new MenuButton("Technology");
menu.setMnemonicParsing(true);
MenuItem item1 = new MenuItem("Java"); MenuItem
item2 = new MenuItem("Python"); MenuItem item3 =
new MenuItem("C++"); MenuItem item4 = new
MenuItem("Big Data");
MenuItem item5 = new MenuItem("Machine Learning");
menu.getItems().addAll(item1, item2, item3, item4, item5);
HBox layout = new HBox(25);
layout.getChildren().addAll(menu);
layout.setPadding(new Insets(15, 50, 50, 150));
layout.setStyle("-fx-background-color: BEIGE");
Scene scene = new Scene(layout, 595, 200);
stage.setTitle("Menu Button"); stage.setScene(scene);
stage.show();
}
public static void main(String args[])
{
launch(args);
}
}

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

 OUTPUT​

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Result:

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

Thus the application using JavaFX controls, layouts and menus was developed and the output
was verified

Sub code:CS2407 Sub Name: Objected Oriented Programming Laboratory

	LAB MANUAL
	Aim:
	Algorithm:
	 //Exno:1(a) Sequential search​
	Output:
	Result:
	Aim:
	Algorithm:

	PROGRAM
	Output:
	Result:
	Aim:
	Algorithm:
	Output:
	Result:
	Aim:
	Algorithm:
	 //Exno:1(d) Insertion sort​
	Result:
	Aim:
	Algorithm:
	Output
	Result:
	Aim:
	Algorithm:
	 //Exno:2(b)Queue​
	Output
	Result:
	Aim:
	Algorithm:

	PROGRAM
	//Exno:3 GENERATING PAY SLIPS FOR THE EMPLOYEE

	OUTPUT
	Result:
	Aim:
	Algorithm:
	//Exno:4 Finding Area of Different Shapes Using Abstract Class

	OUTPUT
	Result:
	Aim:
	Algorithm:
	//Exno:5 Finding Area of Different Shapes Using Interface

	OUTPUT
	Result:
	Aim:
	Algorithm:
	//Exno:6 User defined exception handling

	OUTPUT RUN1
	Result:
	Aim:
	Algorithm:

	PROGRAM
	//Exno:7 Multi-threaded application

	OUTPUT
	Result:
	Aim:
	Algorithm:

	PROGRAM
	OUTPUT:
	Result:
	Aim:
	Algorithm:
	//Exno:9 Finding Maximum and Minimum using Generic Classes

	OUTPUT:
	Result:
	Aim:
	Algorithm:

	PROGRAM
	//Exno:10 Applications using JavaFX controls, layouts and menus

	 OUTPUT​
	Result:

