ПЛАН ЗАНЯТИЯ

Дата <u>25.01.2023</u>г. Группа: XKM 2/1. Курс: второй. Семестр: IV

Дисциплина: Техническая механика

Специальность: 15.02.06 «Монтаж и техническая эксплуатация холодильно-компрессорных машин и установок (по отраслям)»

Тема занятия: Расчет на кручение бруса круглого поперечного сечения

Вид занятия: Практическое

Форма проведения занятия: Объяснительно - иллюстративная

Межпредметные связи:

Обеспечивающие: Математика, начертательная геометрия

Обеспечиваемые: Техническая механика, Инженерная графика

Рекомендуемая литература

Основная литература:

- 1. Никитин Е.М. Теоретическая механика для техникумов. М.: Высшая школа, 2014
- 2.Олофинская В.П. Техническая механика. Сборник тестовых заданий. Москва, Форум, Инфра М, 2014.
- 3. Аркуша А.И. Техническая механика. Москва, Высшая школа, 2012. Дополнительная литература:
- 1. 1. Аркуша А.И. Руководство к решению задач по теоретической механике. М.: Высшая школа, 2012.

Практическая работа №7

Тема: Расчет на кручение бруса круглого поперечного сечения

Цель: Научиться проводить проектировочный расчет вала при кручении.

Теоретическое обоснование

Кручение круглого бруса происходит при нагружении его парами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ, называемый *углом сдвига*. Поперечные сечения разворачиваются на угол φ, называемый *углом закручивания*.

Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор – крутящий момент.

Внешними нагрузками также являются две противоположно направленные пары сил. Крутящий момент в сечении равен сумме моментов внешних сил, действующих на отсеченную часть. Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график — эпюру крутящих моментов вдоль оси бруса.

Крутящий момент считается положительным, если моменты внешних пар сил направлены по часовой стрелке.

Ход работы

Задание.Стальной вал вращается с угловой скоростью ω (рад/с), передавая на шкивы мощности P_i , как показано на схеме. Необходимо:

- 1) Определить значения скручивающих моментов, соответствующих передаваемым мощностям, и уравновешенный момент, если M_i =0;
 - 2) Построить эпюры крутящих моментов по длине вала;
- 3) Определить размеры сплошного вала круглого и кольцевого сечений из расчетов на прочность и жесткость, приняв [τ]=30 МПа; [φ_0]=0,02 рад/м; c=0,9;
- 4) Сравнить валы круглого и кольцевого сечения в зависимости от массы и габаритов.

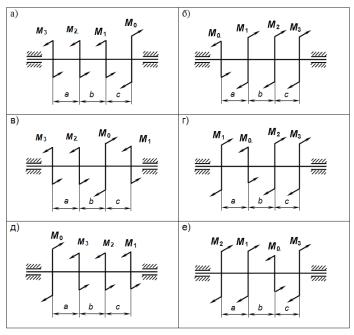

Данные своего варианта взять из таблицы 1.

Таблица 1. Данные для расчетов

Вариант	Схема	Р ₁ , кВт	Р ₂ , кВт	Р ₃ , кВт	<i>w</i> , рад/с
1	a	10	110	35	2
2	б	20	120	40	3
3	В	30	130	45	4
4	Γ	40	140	50	5
5	Д	50	150	55	6
6	e	60	160	60	7
7	a	70	170	65	8
8	б	80	180	70	9
9	В	90	190	75	10
10	Γ	100	200	80	2
11	Д	10	110	85	3

		1	1	1	
12	e	20	120	90	4
13	a	30	130	95	5
14	б	40	140	100	6
15	В	50	150	105	7
16	Γ	60	160	110	8
17	Д	70	170	115	9
18	e	80	180	120	10
19	a	90	190	125	2
20	б	100	200	130	3
21	В	10	110	135	4
22	Γ	20	120	140	5
23	Д	30	130	145	6
24	e	40	140	150	7
25	a	50	150	155	8
26	б	60	160	160	9
27	В	70	170	165	10
28	Γ	80	180	170	9
29	Д	90	190	175	8
30	e	100	200	180	7
31	a	10	110	35	6
32	б	20	120	40	5
33	В	30	130	45	4
34	Γ	40	140	50	3
35	Д	50	150	55	2

Схемы для расчета

Сделать выводы.

Контрольные вопросы.

- 1. Что называется кручением?
- 2. Запишите правило знаков для крутящего момента.
- 3. Как изменяются длина и размеры поперечного сечения бруса при кручении.

Методические рекомендации к выполнению практической работы №7

Условие прочности при кручении.

Разрушение бруса при кручении происходит с поверхности, при расчете на прочность используют условие прочности:

$$au_k^{\max} = \frac{M_k}{W_p} \le [au_{\hat{e}}]$$
, где $[au_{\hat{e}}]$ -допускаемое напряжение кручения.

Виды расчетов на прочность:

Существует 3 вида расчетов на прочность:

Проектировочный расчет – определяется диаметр вала (бруса) в опасном сечении:

$$\tau_{k} = \frac{M_{k}}{0.2d^{3}} \le [\tau_{\hat{e}}]$$
 откуда $d \ge \sqrt[3]{\frac{M_{k}}{0.2[\tau_{k}]}}$

2. Проверочный расчет – проверяется выполнение расчета прочности $\tau_{k}^{\max} = \frac{M_{k}}{W_{k}} \leq \left[\tau_{\hat{e}}\right]$

Определение нагрузочной способности (максимального крутящего 3. момента)

$$[\mathbf{M}_{k}] = [\tau_{k}] \cdot W_{p}$$

Расчет на жесткость.

$$\varphi = \frac{\tau_{_k} \mathbb{X}}{GD/2} = \frac{M_{_k} \mathbb{X}}{GJ_{_p}}$$
 Закон Гука имеет вид: $\tau_{_k} = G\gamma$, тогда

Произведение ${}^{G\!J_p}$ называется жесткостью сечения.

Обычно рассчитывается угол закручивания, приходящийся на один метр длины бруса φ_0 .

Условие жесткости при кручении можно записать в виде:

$$arphi_0=rac{M_k}{GJ_p}\!\leq\! \left[arphi_0
ight]_{,}$$
 где $\left.arphi_0$ -относительный угол закручивания, $\left.arphi_0=rac{arphi}{\mathbb{N}}
ight._{,}$

Пример.

Стальной вал (рис.1) вращается, передавая на шкивы моменты M_i . Необходимо:

- 1) Определить значение уравновешенного момента M_0 , если $\Sigma M = 0$;
- 2) Определить размеры сплошного вала круглого и кольцевого сечений из расчетов на прочность, приняв $[\tau_{\text{kD}}]$ =30 МПа; и c=0,9. Проверить жесткость вала, если $[\varphi_0]=0.02$ рад/м; $G=8\cdot10^4$ МПа;

Дано P_3 =150 кВт; P_1 =50 кВт; P_2 =40 кВт; ω =5рад/с;

Найти: d; D, d_0

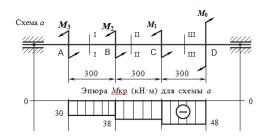


Рисунок 1- Расчетная схема

Решение:

1. Определяем вращающие моменты на валу:

$$M_1 = P_1/\omega = 50/5 = 10$$
кН·м; $M_2 = P_2/\omega = 40/5 = 8$ кН·м; $M_3 = P_3/\omega = 150/5 = 30$ кН·м;

 $\sum M_i$ =0; M_0 = M_1 + M_2 + M_3 =10+8+30=48 кH·м. 2. Определяем крутящие моменты на участках заданной схемы вала:

Участок AD, сечение I-I; $M_{\text{кр1}} = -M_3 = -30 \text{ кH·м}$;

Участок DC, сечение II-II; $\dot{M}_{\rm kp2}$ =- M_3 + M_0 =-30+48=18 кH·м;

Участок СВ, сечение III-III; $M_{\text{кр3}}$ =- M_3 + M_0 - M_1 =-30+48-10=8 кН·м; $M_{\text{крmax}}$ | =30 кН·м.

3. Определяем диаметр вала из расчета на прочность:

$$W_{x} = \frac{M_{\kappa p}}{\left[\tau_{\kappa p}\right]} = \frac{30 \cdot 10^{6}}{30} = 10^{6}$$
MM³;

Момент сопротивления кручению:

$$d = \sqrt[3]{\frac{16 \cdot W_p}{\pi}} = \sqrt[3]{\frac{16 \cdot 10^6}{3,14}} = \frac{1,72 \cdot 10^2 \text{ mm}; d=180 \text{ mm};}{16 \cdot W_p}$$

Сплошное сечение:

Кольцевое сечение: $D = \sqrt[3]{\frac{16 \cdot W_p}{\pi \left(1 - 0.9^4\right)}} = \sqrt[3]{\frac{16 \cdot 10^6}{3.14 \left(1 - 0.9^4\right)}} = 2.46 \cdot 10^2 \text{ мм};$

D=250 мм; тогда d_0 =250·0,9=220 мм

4. Проверяем жесткость вала:

 $J_p = \frac{\pi d^4}{32} = \frac{3,\!14\cdot 180^4}{32} = \frac{103008\cdot 10^3}{32}$ = 103008 · 10³ мм⁴

$$\varphi_0 = \frac{M_{_{\mathit{KP}}}}{G \cdot J_{_{\mathit{p}}}} = \frac{30 \cdot 10^6}{8 \cdot 10^4 \cdot 103008 \cdot 10^3} = 3,64 \cdot 10^{-6} \text{ рад/мм;}$$

Угол закручивания

 $\varphi_0 = 3,64 \cdot 10^{-6} \text{ рад/мм} = 3,64 \cdot 10^{-3} \text{ рад/м} = 0,004 \text{ рад/м}; \ \varphi_0 < [\varphi_0]; 0,004 < 0,02;$

Условие жесткости выполняется.

5. Выбираем рациональное сечение для вала - сравниваем массы и габариты сечений:

$$\frac{m}{m_{\kappa}} = \frac{A}{A_{\kappa}} = \frac{d^2}{D^2 - (d_0)^2} = \frac{180^2}{250^2 - 220^2} = \frac{D}{2,3}; \qquad \frac{D}{d_0} = \frac{250}{180} = 1,4$$

Вал кольцевого сечения легче сплошного вала в 2,3 раза; а габариты сечений отличаются на 40 %. Выбираем для вала кольцевое сечение.

Ответ:d=180 мм;D=250 мм, d_0 =220 мм.

Задание для самостоятельной работы:

- 1. Выполнить практическую работу
- 2. Письменно ответить на контрольные вопросы
- 3.Фотографию работы прислать в личном сообщении BK https://vk.com/id139705283

На фотографии вверху должна быть фамилия, дата выдачи задания, группа, дисциплина. Например:«Иванов И.И, **25.01.2023г**, группа XKM 2/1, «Техническая механика».