
NOT considered anymore
EventDefinition metadata for improved

Event Discovery​
​

Instead read here:
●​ [public] Use Event Type for generic discovery without workloads
●​ [public] Allow Event Type discovery based on improved integration for CloudEvent …

PUBLIC DOCUMENT

Contributor(s) Matthias Wessendorf

Proposal Date Apr 25, 2023

Status

Main Github Issue https://github.com/knative/eventing/issues/6890
https://github.com/knative/eventing/pull/6999

[Section filled out by WG Lead; NB: these only need to be “approvers”, not WG leads]

Approver(s) Approver Area Approver Email

Pierangelo Di Pilato Eventing WG

https://docs.google.com/document/d/1US5Ve0CwhXwO8pUudN36vLkuSetEtSgwQ1btuG_9Xmk/edit
https://docs.google.com/document/d/1hxCpQMI_qCy2CsHEv0nits4t65DExkizgg3KLvD4z2s/edit?resourcekey=0-ts4WNm_tlNYWuo9eWe1stA#heading=h.n8a530nnrb
https://github.com/knative/eventing/issues/6890
https://github.com/knative/eventing/pull/6999

None

Motivation / Abstract

Currently in Knative the EventType API describes types of events that can be consumed
from a given broker. However this assumes that there are sources connected to a
running instance of a broker.

It is not possible to tell what event type definitions are generally available in Knative
Eventing, based on the installed sources/event emitters, independent of a running
broker.

In the Knative Eventing we do have a few built-in sources, see the following query to
identify those:

k get crds -l 'duck.knative.dev/source'
NAME CREATED AT
apiserversources.sources.knative.dev 2023-03-15T12:49:47Z
containersources.sources.knative.dev 2023-03-15T12:49:47Z
pingsources.sources.knative.dev 2023-03-15T12:49:47Z
sinkbindings.sources.knative.dev 2023-03-15T12:49:47Z

Some of those sources, like the ApiServerSource or the PingSource do have a fixed set
of event types they are emitting:

Source Event Types

ApiServerSource ●​ dev.knative.apiserver.resource.add
●​ dev.knative.apiserver.resource.delete
●​ dev.knative.apiserver.resource.update
●​ dev.knative.apiserver.ref.add
●​ dev.knative.apiserver.ref.delete
●​ dev.knative.apiserver.ref.update

PingSource ●​ dev.knative.sources.ping

On an empty installation of Knative it is not possible to say what event types are
generally available in the system for future consumption, only when a source object is
created and points to a broker:

None

None

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 name: ping-source-broker
spec:
 schedule: "*/1 * * * *"
 data: '{"message": "Hello world!"}'
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1
 kind: Broker
 name: my-broker

After this creation of the Source, the events for a specific broker are discoverable:

k get eventtypes.eventing.knative.dev
TYPE SOURCE
REFERENCE NAME READY
dev.knative.sources.ping /apis/v1/.../pingsources/ping-source-broker
my-broker True

Another limitation from the above scenario is that EventTypes are only discoverable when used
in combination with a broker. Applications based on Channels or regular sinks, are not able to
make use of the EventType.

New CRD for Event Type Definitions

Knative Eventing should have a new (Cluster) Event Type Definition metadata CRD that
can capture this information independently of running applications.

The idea behind this new proposed CRD is influenced by the CNCF CloudEvents
“Message Definition Groups” API, which basically groups event type definitions into
groups.

Take a look at the table above, which provides a grouping of Knative sources and their
event types. With this table developers know what they can expect from the different
sources, regardless of the application implementation depending on a broker or not.

https://github.com/xregistry/spec/blob/main/message/spec.md

Besides the simple grouping of events type definitions to a specific group (the Knative
source) the new CRD will also give additional information about the event payload and
its metadata.

Background

User Stories

As system integrator​
I want to register my source with information what events it emits​
so that other teams can discover and subscribe to my system events

As a application developer ​
I want to declare what events my service is returning after processed incoming events​
so that other teams can discover and subscribe to my app events

As application developer​
I want to have a simple catalog* to find events​
so that I can easily consume events available in the system

Scope

●​ In Scope
○​ EventDefinition CRD / type
○​ Cluser EventDefinition CRD / type
○​ Relation to EventType

●​ Out of Scope
○​ The discovery of “custom events” (e.g., events generated within the

cluster by a Service, by a reply to the Broker, etc.) We believe EventType
could be used in those cases, although we haven’t fully fleshed out the
details yet.

None

○​ A registry implementation of the CE registry spec (which could help with
the point above)

○​ Security policies in the Broker. For example to allow only registered
EventTypes to flow through the system, or to register EventTypes upon
first-seen, etc.

○​ EventType usage on other components like Channels

Proposal Design / Approach

Provide a new metadata CRD to be installed with the build-in sources, called
EventDefinition / ClusterEventDefinition.

Design

(Cluster) Event Definition CRD

We provide a “metadata CRD'', (Cluster)EventDefinition, that offers generic information
about event definitions, rather than for a specific workload.

Below is are a few examples:

1.​ Cluster-scoped EventDefinition for the Knative “ping source”:

apiVersion: eventing.knative.dev/v1alpha1
kind: ClusterEventDefinition
metadata:
 name: dev.knative.sources.ping
spec:
 group: pingsource.sources.knative.dev
 description: Knative PingSource CloudEvent type definition
 metadata:
 attributes:
 - name: type
 value: dev.knative.sources.ping
 required: true
 - name: specversion
 value: "1.0"

None

 - name: id
 required: true
 - name: source
 value:
"/apis/v1/namespaces/{namespaceName}/pingsources/{souceName}"
 - name: time
 required: true
 schemaUrl: ""
 format: CloudEvents/1.0

2.​ Custom, namespaced, event definition for 3rd party integration

apiVersion: eventing.knative.dev/v1alpha1
kind: EventDefinition
metadata:
 name: com.my.shop.neworder
spec:
 group: oder.system.com
 description: Abstract CloudEvent type definition for new orders
 metadata:
 attributes:
 - name: type
 value: com.my.shop.neworder
 required: true
 - name: specversion
 value: "1.0"
 - name: id
 required: true
 - name: source
 value: "/someURI"
 - name: time
 required: true
 schemaUrl: "https://..."
 format: CloudEvents/1.0

Resources bundled with Knative Eventing

For built-in sources that emit a fixed set of events Knative Eventing will bundle a set of
ClusterEventDefinitions, with the needed details. On a fresh Knative Eventing installation, with
no workload running, the expected state would be a set of predefined Cluster Event Definitions:

None

None

kubectl get clustereventtypedefinitions.eventing.knative.dev
NAME GROUP
dev.knative.apiserver.ref.add apiserversources.sources.knative.dev
dev.knative.apiserver.ref.delete apiserversources.sources.knative.dev
dev.knative.apiserver.ref.update apiserversources.sources.knative.dev
dev.knative.apiserver.resource.add apiserversources.sources.knative.dev
dev.knative.apiserver.resource.delete apiserversources.sources.knative.dev
dev.knative.apiserver.resource.update apiserversources.sources.knative.dev
dev.knative.sources.ping pingsources.sources.knative.dev

3rd party integrations with custom EventDefinitions

For 3rd party integrators or application developers that have sources, jobs, deployments etc that
are emitting events the recommendation is to also provide a set of EventDefinitions for improved
discoverability. See the above example.

Relationship to existing EventType API

Each EventType object, representing a “living” instance of a type of an event that can be
directly consumed and will have a relationship to its broader Event Type definition.
During reconciliation of EventTypes they should be updated with an extra annotation
indicating to which EventDefinition the EvenType belongs. This annotation reference
must be set during the reconciliation process of the EventType itself.

Implementation

The Golang API “eventdefinition_types.go”:

type EventDefinition struct {
​ metav1.TypeMeta `json:",inline"`
​ // +optional
​ metav1.ObjectMeta `json:"metadata,omitempty"`

​ // Spec defines the desired state of the EventDefinition.
​ Spec EventDefinitionSpec `json:"spec,omitempty"`​
​
}

type EventDefinitionSpec struct {
​ // SchemaURL is a URI, it represents the payload schemaurl​
​ // It may be a JSON schema, a protobuf schema etc. It is optional
​ // +optional
​ SchemaURL *apis.URL `json:"schemaUrl,omitempty"`

​ // Describes the format of the events​
 //but for us it is generally only CE...?
​ Format string `json:"format,omitempty"`

​ // The group where the EventDefinition is defined.
​ Group string `json:"group,omitempty"`

​ // Event metadata, such as attributes, extensions​
 // from CloudEvents spec.
​ Metadata EventDefinitionMetadata `json:"metadata,inline"`

​ // Description is an optional field used to describe the​
 // definition, in any meaningful way.
​ // +optional
​ Description string `json:"description,omitempty"`

}

type EventDefinitionMetadata struct {
​ Attributes map[string]EventDefinitionAttribute `json:"attributes"`
}

type EventDefinitionAttribute struct {
​ Required bool `json:"required"`
​ Value interface{} `json:"value,omitempty"`
}​

The new API is seen as pure metadata and therefore the CRD will have no status in the
first iteration of the API version.

Prerequisites / Dependencies

[Are there any issues / tech that need to be in place for this to work?]

Integration Checklist

Operations

The feature will be part of the regular eventing distribution and is supported for the
built-in source like PingSource or ApiServerSource.

Observability

[Will this feature need instrumentation or measures that are exposed to specific personas? If
so, which personas and optics are needed?]
Developers will be able to use the new API without any tweaking.

CLI `kn`

Developers will be able to use `kn` subcommand groups to manipulate instances of
EvenTypeDefinition. Following the same UX design as for other resource types, there will be
several options flags to define fields of ETD with opinionated defaults when suitable.

Test Plan

[How is the feature tested for use? i.e unit testing, E2E, isolated or in conjunction with
other components? that conformance tests need to be in place?]

●​ Unit tests for the feature
●​ Reconciler e2e for the feature

Documentation

[What personas will use this feature and which documented use-cases does this affect?
Are there new use-cases that need to be written or existing ones edited?]

The feature will help developers discovering event type definitions better and will need a
solid set of documentation and samples

Exit Criteria

[What are the requirements to exit each stage]

Alpha

●​ API will start in v1alpha1
●​ Tests need to be implemented
●​ Documentation needs to be there
●​ Iterate if the API has missing pieces?
●​ (optional) CLI integration

Beta

●​ After phase of stabilization the API will move to v1beta1
●​ Tests need to be updated
●​ Documentation needs to be updated
●​ CLI integration

GA

●​ Similar to the above: Once the v1beta API is stable, move to v1

Alternatives Considered

Modify EventType and do not require the broker

Instead of the new additional type one option would be to change the EventType and make the
broker field optional so that an event type would be “ready” without a broker, and generic type
definition information could be submitted as well.
This approach has the following advantages:

-​ Less new APIs / types
This approach has the following disadvantages:

-​ The Event Type API would do too much as it would represent types of events that can be
consumed from a given broker and in the cluster

-​ This would confuse users as it is not directly clear when an event type is ready and why,
given the different meanings.

-​ Multi purpose type is offering a bad or harder to understand UX

Use just EventDefinition for “cluster” and “namespace” scope

Instead of introducing the “cluster scoped” nuance for “ClusterEventDefinition”, we use the
EventDefinition for both: custom event definition (true namespaced) and “cluster wide”
definitions, like default source for knative.
While on the surface this seems easier, b/c has one CRD less, there are downsides that the
actual differentiation between “cluster” and “namespaced” are NOT given. Leading to different
confusion

	NOT considered anymore EventDefinition metadata for improved Event Discovery​​Instead read here:
	
	Motivation / Abstract
	New CRD for Event Type Definitions

	Background
	User Stories
	Scope

	Proposal Design / Approach
	Design
	(Cluster) Event Definition CRD
	Resources bundled with Knative Eventing
	3rd party integrations with custom EventDefinitions
	Relationship to existing EventType API

	Implementation
	Prerequisites / Dependencies

	Integration Checklist
	Operations
	Observability
	CLI `kn`
	Test Plan
	Documentation

	Exit Criteria
	Alpha
	Beta
	GA

	Alternatives Considered
	Modify EventType and do not require the broker
	Use just EventDefinition for “cluster” and “namespace” scope

