% E RAD

https://qithub.com/TheMIU/mongo-crud

‘ Node.js

JavaScript use =de server-side development mded» cem» JavaScript
runtime environment <ob.

o»@ language d»% Use =3¢ web applications ©c server-side
components (APIs & server logic) build =3d» oeccead.

(ee’e& client side, server side 206:'® language oo JS)

What is Node.js

Node.js is an open-source, cross-platform JavaScript runtime environment
that allows developers to execute JavaScript code server-side.

It is built on the V8 JavaScript runtime engine, which is the same engine that
powers the Chrome web browser's JavaScript execution.

MNode.js is commonly used for building server-side applications, APls, and
real-time applications like chat applications or online gaming platforms.

It has gained widespread adoption in the web development community and
is considered a versatile and powerful technology for building scalable and
efficient server-side applications using JavaScript.

https://docs.google.com/document/d/19xY6hzT7mlFyuoqHJ2_NbMw9qapSL7B3wnpIanwyHaE/edit#heading=h.z4o59wyuzrnc
https://themiu.github.io/Notes/
https://github.com/TheMIU/mongo-crud

Key features and Characteristics of Node.js

e JavaScript Everywhere:

o Node.js enables developers to use JavaScript for both client-side
and server-side development.

o This allows for the sharing of code and skills between the front end
and back end of web applications.

e Asynchronous and Event-Driven:

o One of the main strengths of Node js is its non-blocking,
asynchronous I/0 model.

o It uses an event-driven architecture that makes it well-suited for
handling concurrent operations, such as processing multiple
requests simultaneously.

e V8 JavaScript Engine:

o Node.js leverages the V8 JavaScript engine developed by Google, which
is known for its high performance in executing JavaScript code.

o This engine compiles JavaScript code into machine code for faster
execution.

e NPM (Node Package Manager):

o Node.js comes with npm, a powerful package manager that simplifies
the process of installing, managing, and sharing third-party libraries and

tools.

o The Node Package Manager is a crucial component of the Node.js
ecosystem.

e Single-Threaded, Event Loop:

o While Node.js is single-threaded, it uses an event loop to handle multiple
concurrent connections.

o This architecture allows it to efficiently handle a large number of
connections without the need for threads.

e Community and Ecosystem:

o Node.js has a vibrant and active community, and it has a vast
ecosystem of libraries and frameworks that simplify various aspects of
web development.

o Popular frameworks like Express.js are commonly used for building web
applications with Node js.

e Scalability:
o Due to its non-blocking, event-driven nature, Node.js is well-suited for
building scalable applications that can handle a large number of
simultaneous connections.

o Itis commonly used in scenarios where high concurrency is essential,
such as real-time applications.

@ Express.js

e Node.js 2co Dwem» web application framework <od.

e web applications, API build =d» oo wwyg =Ic.

e routing, middleware, server-side logic handle =35» tools wo
features wowa.

What is Express.js?

e Express.jsis a web application framework for Node.js.

e [t simplifies the process of building web applications and APls by providing a
set of features and tools for handling routes, middleware, and HTTP
requests and responses.

e Express.js is known for its minimal and flexible design, allowing developers
L1
to structure their applications in a way that makes sense for their specific
USE cases.

e |[tis widely used for building both small and large-scale web applications.

e Key features of Express.js include routing, middleware support, templating
engines, and an ecosystem of extensions and plugins.

Client - Server side 2@
o project com Huen 96T 9

Single Codebase:

Having both the client and server sides in the same project allows you
to maintain a single codebase for your entire application. (Easy
Maintenance)

Seamless Integration:

React is designed to work seamlessly with server-side logic. By
integrating both sides in the same project, you can easily share code,
configurations, and dependencies between the frontend and backend
components. This can lead to a more cohesive and integrated
development experience.

Code Organization:

Keeping client and server code together makes it easier to organize

and manage the overall structure of your application using a modular
approach. (Making it easier to navigate and understand the codebase)

Development Efficiency:

During development, having the client and server sides together allows
for faster iteration. Changes made on one side can be quickly tested
and validated against the other side. This can be especially
beneficial when implementing features that require coordination
between the frontend and backend.

Deployment and Hosting:

Deploying and hosting a unified project is often more straightforward
than managing separate deployments for the client and server. Many
hosting platforms and tools are designed to handle full-stack
applications, simplifying the deployment process.

Reduced Latency:

By having both the client and server sides in the same project, you
can minimize latency between them. This is important for real-time
applications where quick communication between the frontend and
backend is crucial

Server-Side Rendering (SSR) and Isomorphic Applications:

React supports server-side rendering, which can be beneficial for
performance and SEO. By having both client and server code in the same
project, you can implement server-side rendering more seamlessly.
creating isomorphic applications that share code between the client
and server.

Middleware

"middleware" - code that runs before the final route call back.
They are in the middle of the beginning of the route and the
callback function.

What is Middleware in Express?

¢ Middleware plays a crucial role in building web applications by allowing you
to perform various tasks during the different stages of a request lifecycle

s |n the context of web frameworks like Express.js, middleware is used to add
functionality to the application. There are several types of middleware:

n.join(__dirname, 'public')))

Sync vs Async

B Java EE
Synchronous < ©®% run Dec) 928 Lemwé ¢ Line ©» blocking (one by
one)
Asynchronous < Time consuming, non blocking task ©=%. (no order)

Client > Home.tsx

https://docs.google.com/document/d/1KL3PGy00skrdpzhaAp3lgBR4wHdVk74bP936plBnqMw/edit#heading=h.evj8sssiqm4q

ey e
CONsT

response

cons

await < execution oo pause ©33. & line vwmed De» D06 008 2@ Jco
line om0 w»E:).
await keyword oo Use wS»on® &% Asynchronous function cod Dedro B.

Sync vs Async

e The terms "async’ and "sync" refer to programming paradigms related to the
k
handling of asynchronous and synchronous operations in software

development.

e These concepts are particularly relevant in languages and frameworks that
deal with I/0 operations, such as network requests, file system operations,

or database queries.

Synchronous (Sync) Example

javascript) Copy code

Asynchronous (Async) Example

Features of Synchronous (Sync)

e Blocking Behavior:
In s}ﬂchronous programming, tasks are executed sequentially, one after
the other.
o When a function or operation is called, the proagram waits for it to
complete before moving on to the next task.
o If a task takes time to complete (e.g., reading a file, making a network

request), the entire program is blocked until that task finishes. .

e Straightforward Execution Flow:
o Synchronous code has a more straightforward and predictable

execution flow.
Code is executed line by line, making it easier to reason about the
program's state.

e Potential for Slower Performance:
Synchronous code can result in slower performance, especially in
scenarios where |/0 operations or other time-consuming tasks are
involved.

The program might spend a significant amount of time waiting.

¢ Straightforward Execution Flow:
o Synchronous code has a more straightforward and predictable
execution flow.
o Code is executed line by line, making it easier to reason about the
program’s state.
e Potential for Slower Performance:
o Synchronous code can result in slower performance, especially in
scenarios where |/0 operations or other time-consuming tasks are
involved.

o The program might spend a significant amount of time waiting.

Features of Asynchronous (Async)
o Non-Blocking Behavior:

o In asynchronous programming, tasks are initiated but do not block the
execution of the program. Instead of waiting for a task to complete, the
program can continue with other tasks.

o Callback functions, promises, or async/await syntax are common
mechanisms for handling asynchronous operations.

e Efficient Use of Resources:

o Asynchronous code allows for more efficient use of resources hecause

the program doesn't have to wait for each task to complete.

o It can initiate multiple tasks concurrently.

Install Express

npx express-generator
npm install

nodemon

Server ¢! change o»d gow®, auto restart =36. 3@ npm run start
oodD OB 5.

npm install nodemon

e Install nodemon globally on your machine
npm install -g nodemon

e Install nodemon on your project as dev-dependency
npm install nodemon -D

Add new script to package.json
"dev" : "nodemon ./bin/www"

npm run dev

Axios

https: //www.npmjs.com/package/axios

npm install axios (frontend)

Axios is a promise-based HTTP library that lets developers make
requests to either their own or a third-party server to fetch data. It
offers different ways of making requests such as GET , POST ,
PUT/PATCH , and DELETE .

CORS

https: //www.npmjs.com/package/cors

npm install cors

Web browser ¢! Hwem security feature cob.

https://www.npmjs.com/package/axios
https://www.npmjs.com/package/cors

Backend ©»o 9e» unauthorized access oc®23. (Browser owmed block wddme,
postman ©c Cros &ded o)

e CORS stands for Cross-Origin Resource Sharing.

e Itis a security feature implemented by web browsers to control how web
pages in one domain can request and interact with resources from another
domain.

e CORS is designed to prevent unauthorized access to resources on a
different origin (domain) than the one that served the original web page.

Same-Origin Policy (SOP)

e By default, web browsers enforce the Same-Origin Policy, which means that
web pages can only make requests to the same origin (protocol, domain,
and port) from which the page originated.

e Security Measure: SOP is a security measure to prevent malicious websites
from making unauthorized requests on behalf of the user to another domain
where the user is authenticated.

Need for using Cross-Origin Requests

e Modern Web Applications: With the rise of web applications that consume
APIs and services from different domains, the need for making cross-origin
requests became essential.

e Cross-Origin Requests: A cross-origin request occurs when a web page
hosted on one domain which makes a request to a different domain
(server), for example, when a front-end application (JavaScript in the
browser) requests data from a server on a different domain.

CORS Implementation

e Browser Enforcement:
o CORS is enforced by web browsers.

o When a cross-origin request is made, the browser sends an HTTP
request with an Origin header to the target server.

e Server Response:

o The server can include specific HTTP headers in its response to indicate
whether the cross-origin request is permitted.

e The primary CORS headers include:

o Access-Control-Allow-Origin: Specifies which origins are permitted to
access the resource.

o Access-Control-Allow-Methods: Specifies the HTTP methods (e.g., GET,
POST) that are allowed when accessing the resource.

o Access-Control-Allow-Headers: Specifies which HTTP headers can be
used when making the actual request.
Example CORS Headers:

plaintext [Copy code

Access-Control-Allow-0Origin: https://allowed-domain.com
Access-Control-Allow-Methods: GET, POST, PUT

Access-Control-Allow-Headers: Content-Type, Authorization

CORS Implementation

javascript

express = require(

cors = require(

.env

npm install dotenv

server>www

var dotenv = require('dotenv');

dotenv.config();

server>.env
L env
£ env

PORT=0060

Server will run on port 5000

) Copy code

“ MongoDB

NoSQL database @wd
JSON 2co werm format owmwo, data flexible Zéwo store »3aG.
wddwuwed Web applications ¢ data handle =55» use 3G.

MongoDB Setup:
- If using the MongoDB driver (low-level):

npm install mongodb

- If using Mongoose (high-level Object Data Modeling library):

npm install mongoose

Create DB

And allow for any ip (not recommended)
https://youtu.be/7jKjBKeddrs

Browse collections
https://youtu.be/yiksOVooAww

Delete DB
https: //youtu.be/2LadFYG5DGC

CRUD Operations
https: ith m/TheMIU/mongo-cr

https://youtu.be/7jKjBKeJdrs
https://youtu.be/yiks0VooAww
https://youtu.be/2LadFYG5DGc
https://github.com/TheMIU/mongo-crud

	
	🏠_Home_
	 Node.js
	 Express.js
	Client - Server side 2ම ​එක project එකක තියෙන එකේ වාසි
	Middleware
	Sync vs Async
	Install Express
	nodemon
	Axios
	CORS
	.env

	 MongoDB
	MongoDB Setup:
	Create DB
	Browse collections
	Delete DB
	CRUD Operations

