Astronomy

For the complete bibliography with references as well as an explanation of the classification scheme go to:

Demonstration Bibliography

The **demonstration name** listed in the bibliography is either the name listed on the reference or, if none is given, a simple descriptive name. In cases where there are several common names for a demonstration, the committee has chosen a preferred name.

The **description** is very brief. It is not intended to be a summary of the reference. One sentence is, in general, sufficient to describe the unique characteristics, if any, of an item. Each source has a unique numbering format. These unique formats are used identify references in the Bibliography.

The formats for the **reference** column and links to the sources are listed below:

Reference	Source
M-1	<u>Sutton</u>
Ma-1	Freier & Anderson
M-1d	<u>Hilton</u>
8-2.8	<u>Meiners</u>
M-108	Dick & Rae
1A 12.01	University of Minnesota Handbook
AJP 52(1),85	American Journal of Physics
TPT 15(5),300	The Physics Teacher
Disc 01-01	The Video Encyclopedia of Physics Demonstrations
PIRA 200	Physics Instructional Resource Association
PIRA 500	<u>PIRA 500</u>
PIRA 1000	<u>PIRA 1000</u>

Each demonstration is listed in only one location, even if it is commonly used to illustrate several concepts.

10/20/22

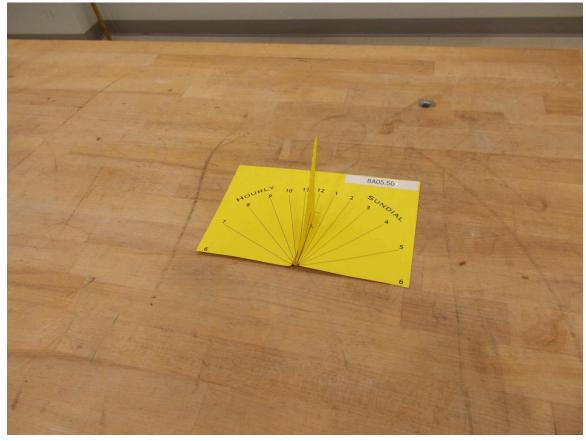
Astronomy

RELATIVE MOTION	4
Rotating Reference Frames	4
Foucault Pendulum	4
GRAVITY	5
Solar System Mechanics	5
Ellipse Drawer	5
PLANETARY ASTRONOMY	6
Historical Astronomy	6
Sundial	6
Celestial Navigation Instruments	7
Solar System Mechanics	8
Orrery	8
Earth - Moon Mechanics	9
Phases of the Moon	9
Eclipse Model	10
Eclipse Stick	11
Views from Earth	12
Retrograde Motion Model	12
Views from Earth - 2	13
Celestial Sphere	13
Armillary Sphere	14
Planetary Characteristics	
Rotational Banding	15
Protoplanet Cooling	16
STELLAR ASTRONOMY	17
The Sun	17
Solar Convection Cells	17
Sunspots on the Overhead	18
Student Gratings and Line Sources	19
Random Walk	20
Stellar Spectra	21
Radial Velocity	21
Stellar Evolution	22
Binary Star Models	22
Eclipsing Binary Light Curve	23
Supernova Core Bounce	
Black Holes	
Gravity Well	25
Membrane Table / Black Hole	26

COSMOLOGY	27
Models of the Universe	27
Expanding Universe	
Gravitational Effects	
Klein Bottle	
Saddle Shape/Paul Trap Model	
Gravitational Lens	

MECHANICS	1E20.10	RELATIVE MOTION		
Rotating Reference Frames				
Foucault Pendulum				

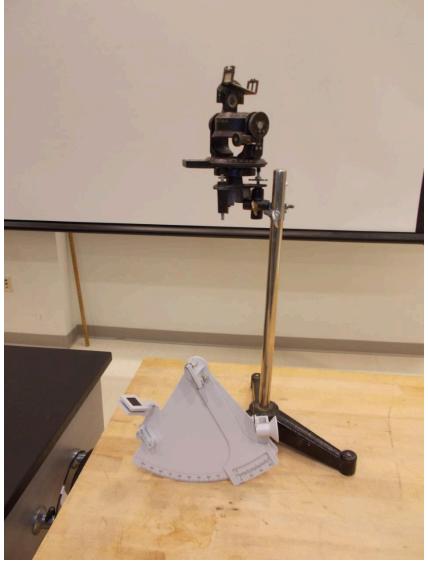
A Foucault Pendulum with a Charron ring drive. Use the machine shop's appliance dolly to move it into the lecture hall.


Location: Outside 134A

Mechanics	1L20.50	GRAVITY
	Solar System Mechanics	
	Ellipse Drawer	
	Magnets hold a string and while the string chalk, an ellipse can be drawn.	g is pulled taut with a piece of

Location: Ca4

ASTRONOMY AND ASTROPHYSICS	8A05.50	PLANETARY ASTRONOMY			
	Historical Astronomy				
Sundial					
	A simula symdial made of as	nd otools			
	A simple sundial made of ca	ru stock			


Location: La3

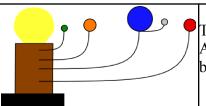
ASTRONOMY AND ASTROPHYSICS	8A05.70	PLANETARY ASTRONOMY	
-------------------------------	---------	---------------------	--

Historical Astronomy

Celestial Navigation Instruments

A sextant and astro-compass (the astro-compass was used to find true bearings in locations where the deviation of the magnetic compass was too great to use the compass accurately).

Location: La3


ASTRONC		
ASTROPH	YSIC	CS

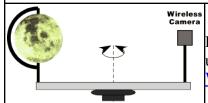
8A10.10

PLANETARY ASTRONOMY

Solar System Mechanics

Orrery

The system is not to scale. The periods of the orbit are scaled. All the planets are on friction clutches and can be positioned by hand.


ASTRONOMY AND
ASTROPHYSICS

8A20.15

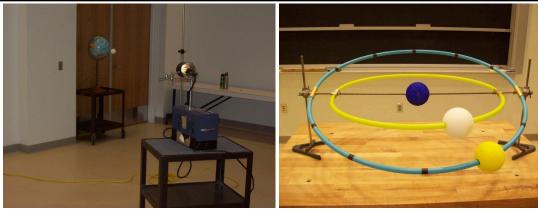
PLANETARY ASTRONOMY

Earth - Moon Mechanics

Phases of the Moon

Rotate the camera in a complete circle keeping the softball used as the Moon, in the light.

Workshop Video



ASTRONOMY AND ASTROPHYSICS	8A20.25		PLANETARY ASTRONOMY	
Earth - Moon Mechanics				

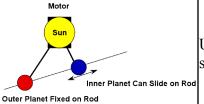
Eclipse Model

Using a point light source for the sun, a globe for the earth and a hanging ping pong ball for the moon, various eclipses can be modeled. Also shown is a model using a pair of hula hoops and Styrofoam balls.

Location: La2, LaT, Id2

ASTRONOMY AND ASTROPHYSICS	8A20.26	PLANETARY ASTRONOMY			
	Earth - Moon Mechanics				
	Eclipse	Stick			
	A Scale model of t	he Farth-Moon system to illustrate eclinses			

LaT


AST	RONOMY	AND
T2 A	ROPHYSIC	25

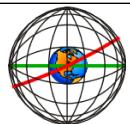
8A30.30

PLANETARY ASTRONOMY

Views from Earth

Retrograde Motion Model

Use the crank on the back to move the two planets around the sun. A sliding rod shows the relative motion of the two planets.



La2

ASTRONOMY AND ASTROPHYSICS	8A35.10	PLANETARY ASTRONOMY
-------------------------------	---------	---------------------

Views from Earth - 2

Celestial Sphere

No instructions

Location: La1

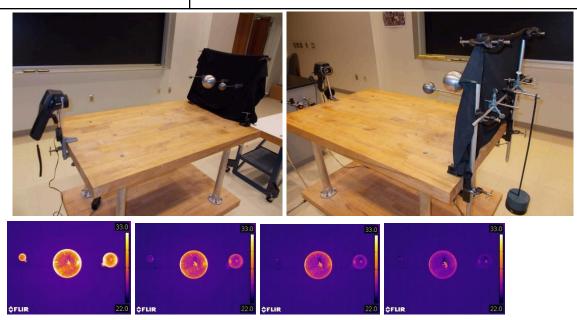
ASTRONOMY AND ASTROPHYSICS	8A35.20	Planetary Astronomy
	Views from the Earth - 2	
Armillary Sphere		
Use to show celestial equator, ecliptic etc. A collection of magnetic celestial objects can be added to gradually build up a model of a celestial sphere.		

Lb1

ASTRONOMY AND ASTROPHYSICS	8A70.55	PLANETARY ASTRONOMY
Planetary Characteristics		

Rotational Banding

Rheoscopic fluid in a clear plastic ball will show rotational banding when spun up on a turntable and then stopped.


Location: Bc3, La3

ASTRONOMY AND	0 4 70 92	Dlanatamy Astronomy
ASTROPHYSICS	8A70.82	Planetary Astronomy

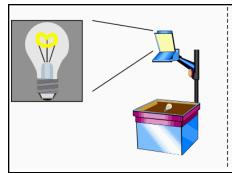
Planetary Characteristics

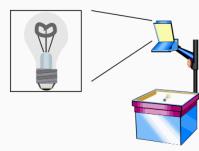
Protoplanet Cooling

Three solid aluminum spheres (4, 2 and 1 inch in diameter) are heated in boiling water and then viewed with an IR camera as they cool.

Location: FLIR Shelf, Lb5

ASTRONOMY AND ASTROPHYSICS	8B10.31	STELLAR ASTRONOMY
The Sun		
Solar Convection Cells		

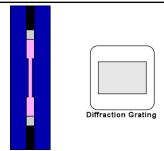

Place the frying pan on the hot plate. Turn the hot plate to between 350 and 400 on the temperature dial. Pour in the oil/aluminum powder mixture to a depth of about a cm. CAUTION: The oil does not have to be very hot to give good convection cells. If the temperature is too high the oil may ignite.


Once the cells have formed they will appear very stable. You can use a spoon to disturb the cell structure and watch its reformation.

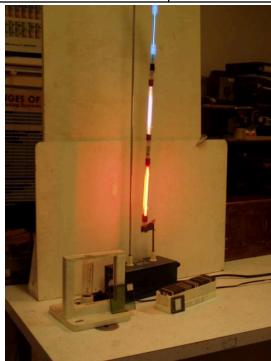
Location: La4

ASTRONOMY AND ASTROPHYSICS	8B10.50	STELLAR ASTRONOMY
The Sun		
Sunspots on the Overl	nead	

A light bulb on a variac is turned up to visible glow and placed on an overhead projector that is turned off. When the overhead is turned on, the filament appears as a dark spot.



Location: La4


MODERN PHYSICS	7B10.10	ATOMIC PHYSICS
----------------	---------	----------------

Spectra

Student Gratings and Line Sources

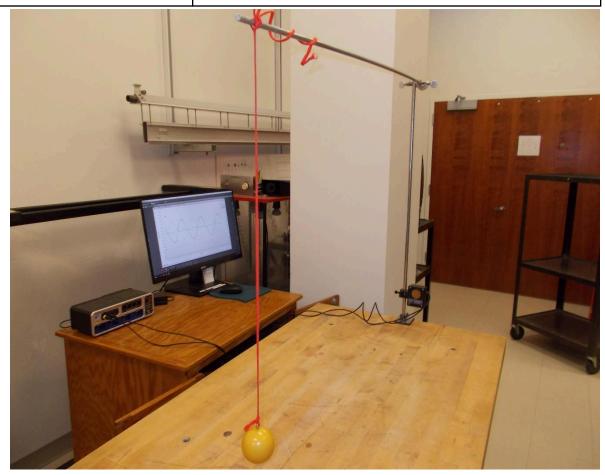
Pass out the 1"x1" gratings to the students. These have 13,400 lines per inch. Turn on one of the light sources. There is a single filament white light source and three discharge tubes, Hg, He, Ne. The Didymium filter can be placed in front of the white light source to show selective absorption. The green carousel has a variety of tubes including H, He, Ne and Hg. The LEDs show individual colors and a white light spectrum.

Location: Ja1, Jb2

ASTRONOMY AND	0D10.60	CTELLAD ACTRONOMY
ASTROPHYSICS	8B10.60	STELLAR ASTRONOMY

The Sun

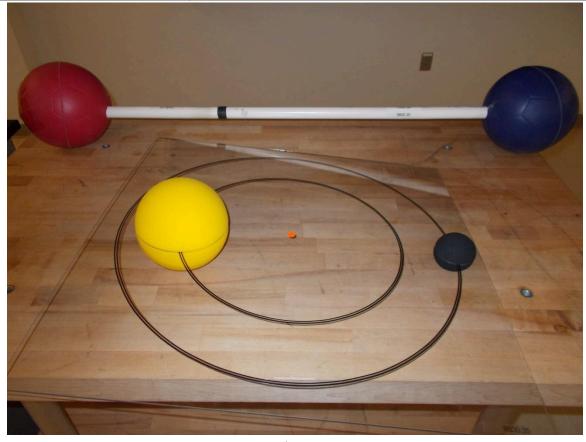
Random Walk



Use a Bumble Ball (a common toy) to illustrate the random walk of high energy photons in a star.

Location: La4

ASTRONOMY AND ASTROPHYSICS	8B20.35	STELLAR ASTRONOMY
Stellar Spectra		
Radial Velocity		
	A conical pendulum is used velocity along the line of sight Velocity.cap.	


Location: Science Workshop, Ca2

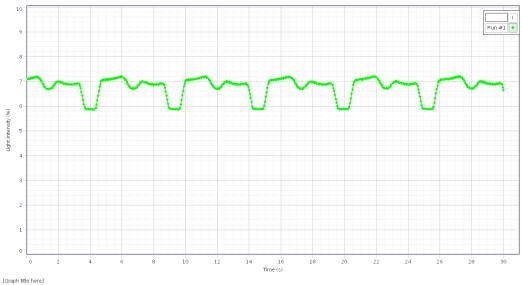
A	ASTRONOMY AND	8B30.35	STELLAR ASTRONOMY
1	ASTROPHYSICS	8D3U.33	STELLAR ASTRONOMI

Stellar Evolution

Binary Star Models

Balls at the end of a rod with the barycenter marked are used to illustrate a binary system. Also, a couple of balls on a plastic sheet with orbits and the barycenter marked can be used to illustrate orbital inclination.

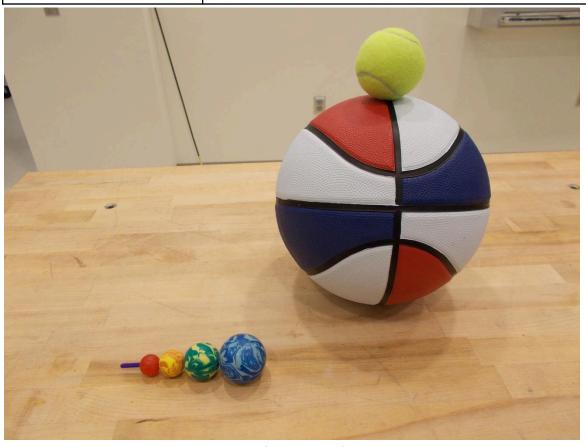
Location: La5


ASTRONOMY AND	8B30.35a	STELLAR ASTRONOMY
ASTROPHYSICS	0D30.33a	STELLAR ASTRONOMI

Stellar Evolution

Eclipsing Binary Light Curve

Two battery-powered light bulbs on a rotating platform are used with a photometer and the Capstone software (Eclipsing Binary.cap) to model an eclipsing binary light curve.


Location: La5, Jb1, Hb2, Hb3, Bc3

ASTRONOMY AND	8B30.50	STELLAR ASTRONOMY
ASTROPHYSICS	8030.30	STELLAR ASTRONOMI

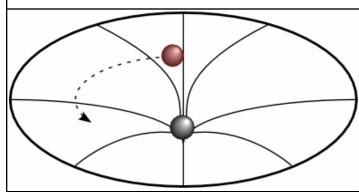
Stellar Evolution

Supernova Core Bounce

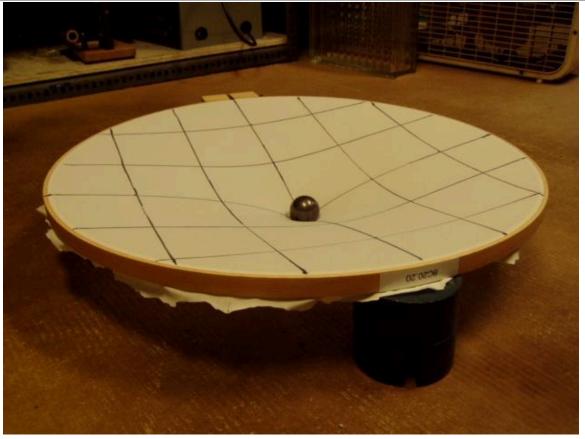
Use the double ball bounce to illustrate supernova core bounce.

Location: La5, Cd3

ASTRONOMY AND ASTROPHYSICS 8B40.20		STELLAR ASTRONOM		
Black Holes				
Gravity Well				
Use this demonstration when discussing black holes and gravity wells.		discussing black holes and		

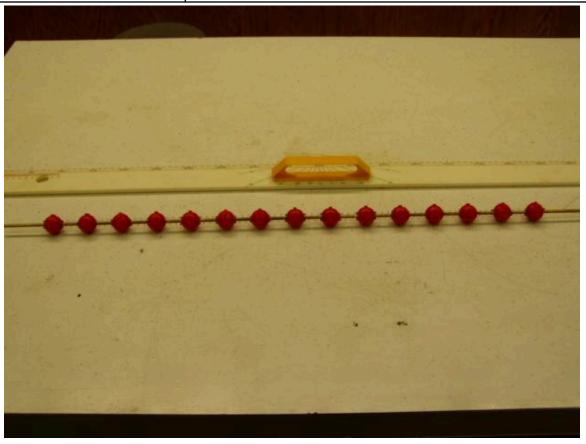


Location: OaT


ACTRONOMY AND ACTRODITYCICS	OD 40 20	STELLAR
ASTRONOMY AND ASTROPHYSICS	8B40.30	ASTRONOMY

Black Holes

Membrane Table / Black Hole



Swimsuit fabric stretched over a wood frame is deformed with a weight and balls are rolled around.

Location: Lb3

ASTRONOMY AND ASTROPHYSICS	8C10.30	COSMOLOGY			
Models of the Universe					
Expanding Universe					
Fifteen plastic balls are threaded onto a rod and connected to springs with equal intervals. Pull on the ends and watch the expanding intervals.					

Location: Lb2

ASTRONOMY AND ASTROPHYSICS	8C20.10	Cosmology	
Gravitational Effects Klein Bottle			
	All surface and no volume.		

Location: Lb4

ASTRONOMY AND
ASTROPHYSICS

8C20.30

Cosmology

Gravitational Effects

Saddle Shape/Paul Trap Model

A model of a negatively curved two-dimensional space. Also shown is a rotating saddle Paul trap model. A ping pong ball is not stable when placed on a saddle shape. The ball becomes stable (trapped) when the saddle is rotated.

Location: Lb4

ASTRONOMY AND	8C20.40	Cosmology
ASTROPHYSICS		

Gravitational Effects

Gravitational Lens

The bottom of a wine glass is used as a gravitational lens and a small ball is used as a distant galaxy. Depending on where the ball is placed you can see a ring, an arc or two arcs.

Location: LB4