

Technology Discussion Document

version 1.3. September 2011

EDIT: A number of people have asked who we are and why we’ve created this document.
Basically I am a developer turned entrepreneur who has created a number of small
businesses over the years. My main website is www.inovica.com. I’ve created this
document to share some of my thoughts for a project that I am involved in. Hope that it
helps you or that you find at least something of use. Pay it forward :) Ade

Purpose of this document

I have recently been asked to help a company as they need to create a roadmap for the technology
that they are going to use in the coming years. The idea is to investigate the technologies available,
establish what is useful (and what is not) and we can ultimately create a specific framework to take
forward. There is a huge change in the technology landscape at the moment and the problem that I
have seen with some technology is that it is “cool” and we need to avoid this. We must only choose
technologies which have a solid foundation and that will help us to create stable bases to run our
businesses.

We would like you to have a read through this document, to join in discussions on the following
forum that we have created for this purpose and to provide feedback on your thoughts:

xxxxxxxxxx

Overview

The following are some of the key areas of development that we need to look at, that we need help
with and that we need to do some research on. Your thoughts would be welcome as I believe that
only as a group and working as a team can we really benefit and make products which are truly
awesome! :)

If there is a particular area that you are interested in exploring, please let me know as I want to split
some research across the team.

Languages

We’ve been using PHP as our main programming language for many years now and I think its fair
to say that PHP is the most widespread programming language for web development and from what
I understand is used on about 75% of web servers. It also powers (at least at the front end) many
popular sites, such as Facebook (though I understand Python and Erlang is used for the chat
service). However, I think it is also fair to say that PHP has its issues and our experience is that
other languages can be more powerful and easier to program in.

One thing we need to be careful of is that we don’t choose a new language just because its the one
the “cool kids” are using and we need to evaluate whether we stay with PHP or move to another
language (or combine them, using the best features of more than one). Naturally we have a lot of
experience with PHP and a lot of legacy code with it, so we need to bear that in mind. The
languages that I would also like us to look at are:

- Python (which we are using anyway) (powers YouTube, much of Google)

http://www.inovica.com

- Ruby on Rails (which definitely IS the cool kids on the block)

- Javascript. There are people using this now at the server-level with good results (ie Twitter). As
Yuri suggested we should look at Node.JS. He said that some of our apps that receive a lot of
HTTP requests (such as EWS, RTS and VWB) would benefit from this as our requests will only
grow as we increase our customer base. He has suggested that we maybe create a unified ssytem
to receive these requests based on Node.JS

Naturally I’ll entertain looking at other languages or opinions that people have about the above.
There are ones such as Erlang and Haskell but I believe these are ‘edge’ cases where we would
need them

Things to look at ...

PHP offical site http://www.php.net/

Ruby on Rails http://rubyonrails.org/

Python official site http://www.python.org/

Style guide for Python code http://www.python.org/dev/peps/pep-0008/

Documenting Python code http://www.python.org/dev/peps/pep-0257/

Erlang http://www.erlang.org/

Haskell http://www.haskell.org

Node.js http://nodejs.org/

Templates and Frameworks

Currently with much of our code we are using PHP along with our home-grown template and
framework system. It has been a great system and has served us well, but I feel that there *may* be
other systems that are more flexible, or we may look at improving our template system itself. Now,
frameworks seem to be defended with an almost religious zeal, so I am outlining only a few here.
The purpose of using a common framework is that all developers will be working with the same
system therefore some of the issues that we have had will be averted.

The following cover what I believe we need here:

●​ Universal way of working that every member of the team can use and understand
●​ A template system that is very easy for a designer to use
●​ A framework system that when updated does not mean reworking previous code (if

possible)
●​ A template system that is secure. I do not believe we should allow any code to be run from

within a template

Naturally the choice of template may, in part, be governed by the programming language(s) that we
ultimately use, although I have found some template systems run across some core languages.

http://www.php.net/
http://rubyonrails.org/
http://www.python.org/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0257/
http://www.erlang.org/
http://www.haskell.org
http://nodejs.org/

Template systems to look at...

Liquid (Ruby) http://www.liquidmarkup.org/

Mustache (cross language templates) http://mustache.github.com/

Mako Templates http://www.makotemplates.org/

Mustache Tutorial http://net.tutsplus.com/tutorials/javascript-ajax/q
uick-tip-using-the-mustache-template-library/

Good blog post about Mustache http://blog.couchbase.com/mustache-js

Good read about how Mustache templates are
logicless

http://www.quora.com/What-are-the-benefits-of-l
ogic-less-templates-like-Mustache

The logic behind Twitter (which uses Mustache) http://engineering.twitter.com/2010/09/tech-behi
nd-new-twittercom.html

CTemplate (which Google uses for their C++
stuff). This inspired Mustache

http://code.google.com/p/google-ctemplate/

Teng - template Engine for PHP, Python and
C++

http://teng.sourceforge.net/

Themeforest. A site selling templates in various
template languages

http://themeforest.net/item/network-wp/69831

ctpp - cross-platform templating that is written in
C++

http://ctpp.havoc.ru/en/index.html

Frameworks to look at...

Pyramid (Framework for Python) https://www.pylonsproject.org/

Django (Framework for Python) https://www.djangoproject.com/

Flask (Microframework for Python) http://flask.pocoo.org/

Cake (Framework for PHP) http://cakephp.org/

Ruby on Rails (Ruby framework) http://rubyonrails.org/

Symfony (PHP Framework) http://www.symfony-project.org/

Sproutcore (Javascript Framework) http://www.sproutcore.com/about/

HTML 5 and CSS Javascript library http://www.modernizr.com/

Prototype JS Framework http://prototypejs.org/

Google Closure library http://en.wikipedia.org/wiki/Google_Closure_Tools

http://www.liquidmarkup.org/
http://www.liquidmarkup.org/
http://mustache.github.com/
http://www.makotemplates.org/
http://net.tutsplus.com/tutorials/javascript-ajax/quick-tip-using-the-mustache-template-library/
http://net.tutsplus.com/tutorials/javascript-ajax/quick-tip-using-the-mustache-template-library/
http://blog.couchbase.com/mustache-js
http://www.quora.com/What-are-the-benefits-of-logic-less-templates-like-Mustache
http://www.quora.com/What-are-the-benefits-of-logic-less-templates-like-Mustache
http://engineering.twitter.com/2010/09/tech-behind-new-twittercom.html
http://engineering.twitter.com/2010/09/tech-behind-new-twittercom.html
http://themeforest.net/item/network-wp/69831
https://www.pylonsproject.org/
https://www.djangoproject.com/
http://flask.pocoo.org/
http://cakephp.org/
http://rubyonrails.org/
http://www.symfony-project.org/
http://www.sproutcore.com/about/
http://www.modernizr.com/
http://prototypejs.org/
http://en.wikipedia.org/wiki/Google_Closure_Tools

Zend Framework http://framework.zend.com/

Naturally there’s loads more...

Databases

Regarding databases we have traditionally been focused on using MySQL. There is a strong push
these days towards NoSQL, so I think we need to evaluate the benefits of this approach as well as
looking at other SQL-based tools such as Postgres which gets a lot of praise. We also need to look
at how our systems interact with databases. Please have a read of the following:

Things to look at ...

Look at ORM (object relational mappers) - Thanks
Lucas

http://www.doctrine-project.org/

SQL Alchemy (SQL toolkit and ORM for python) http://www.sqlalchemy.org/

S3 Tools for working with Amazon S3 http://s3tools.org/s3tools

Cassandra - Scalable, distributed database - looks
cool

http://cassandra.apache.org/

Mysql master/slave http://blog.dotcloud.com/high-availability-mysql-
masterslave-now-on-do

Kyoto Cabinet http://fallabs.com/kyotocabinet/

Caching & Search

The caching of data and pages can reduce the load on the servers, improve the load time and
therefore improve the users experience. A traditional database, with a traditional structure, can
quickly cause problems for search, especially as the database grows. Therefore we need to look at
how search can be improved and how we can manage larger datasets.

Things to look at ...

Squid http://www.squid-cache.org

Varnish https://www.varnish-cache.org/

Memcached http://en.wikipedia.org/wiki/Memcached

http://framework.zend.com/
http://www.doctrine-project.org/
http://www.sqlalchemy.org/
http://s3tools.org/s3tools
http://cassandra.apache.org/
http://blog.dotcloud.com/high-availability-mysql-masterslave-now-on-do
http://blog.dotcloud.com/high-availability-mysql-masterslave-now-on-do
http://fallabs.com/kyotocabinet/
http://www.squid-cache.org
https://www.varnish-cache.org/
http://en.wikipedia.org/wiki/Memcached

Scaling PHP apps with Varnish (Article) http://www.ibm.com/developerworks/opensource/libr
ary/os-php-varnish/index.html

Sphinx http://sphinxsearch.com/

Lucene (indexing engine) http://lucene.apache.org/solr/

API for Python for Solr (part of Lucene) https://github.com/tow/sunburnt

Redis. Fast memory DB to store frequently
accessed data

http://redis.io/

Article on Hadoop http://tcfast.com/2011/07/17/hadoop-startups-w
here-open-source-meets-business-data/

API’s

Nearly every new web app or product which comes onto the market these days has an API. It
makes it easy for the owning company to provide a hook into their apps for other people to extend
and naturally it is often a very good fit for developers also. My own feeling is that we need to have
an API for everything that we do from now on and that we should utilise our own API to create our
products. Doing it this way means that we know that the API works. My suggestion would be to
have a private and a public API layer, for obvious reasons.

Rather than outlining all my current research on this here, I think it would be useful for you to read a
couple of interesting discussions relating to APIs as well as some other links. My suggestion would
be to read these, look at the links and then to feedback in the forum about it. From here we can
then start to make some progress.

Things to look at...

Why you absolutely MUST write an API when you
write your next app

http://news.ycombinator.com/item?id=1931396

Best Books on API design. Some great links here
and some good video links

http://news.ycombinator.com/item?id=1668561

Little manual of API design (discussion) http://news.ycombinator.com/item?id=2796371

Little manual of API design (link)
Great book on this as a PDF for you to download

http://dl.dropbox.com/u/5970491/api-design.pdf

Programming Methodology

Now that we are growing our team we must create a consistent way to program to ensure that
everything is coded in the same way, making it easier for any member of the team to become
involved. This includes:

●​ Documenting code. We need to adopt a standard here for this
●​ Documentation. All of our apps need documenation
●​ Version control. We need to use a version control system (such as Git or Mercurial, which

we currently use)

http://www.ibm.com/developerworks/opensource/library/os-php-varnish/index.html
http://www.ibm.com/developerworks/opensource/library/os-php-varnish/index.html
http://sphinxsearch.com/
http://lucene.apache.org/solr/
https://github.com/tow/sunburnt
http://redis.io/
http://tcfast.com/2011/07/17/hadoop-startups-where-open-source-meets-business-data/
http://tcfast.com/2011/07/17/hadoop-startups-where-open-source-meets-business-data/

●​ Deploying apps - also need to look at across multiple servers
●​ Bug tracking. We need to ensure we have a good bug tracking system. Currently we’re

using Assembla for this and version control
●​ Project management.
●​ Method. We need to look at ‘how’ we code. My suggestion is to look at Agile development
●​ Training. We need to ensure that each team member receives enough training in the areas

they are concentrating. This either means the provision of resources such as books, online
training or 1-1 training from other team members

●​ Testing. We need to do both functional testing as well as load testing on our apps

We need to have discussions on the above as well as someone to take areas of these forward and
make decisions on them

Things to look at...

Assembla http://www.assembla.com

Github https://github.com/

Read The Docs - online documentation site
(need to find out if it allows commercial work)

http://readthedocs.org/

Selenium automates browsers. Good for
automated web testing

http://seleniumhq.org/

Load testing https://secure.blitz.io/pricing

Unit Testing http://en.wikipedia.org/wiki/Unit_testing

Test Driven Development http://en.wikipedia.org/wiki/Test-driven_develop
ment

Agile Development http://en.wikipedia.org/wiki/Agile_software_dev
elopment

Deploying apps using Chef (article) http://help.opscode.com/kb/otherhelp/build-a-dj
ango-stack

Literate Programming http://en.wikipedia.org/wiki/Literate_programmi
ng

Design

This is one area where I have the least knowledge, but I wanted to put it into this document so that
we can come up with a ‘plan’ for how we are doing our design. It links to our ‘template’ side of
things

Design of websites has changed hugely over the years - both in terms of look as well as how these
sites work. We now have the requirement for more interaction on a site (Ajax etc) as well as
multiple browsers and platforms (desktop, laptop and mobile devices). We need to look at the best

http://www.assembla.com
https://github.com/
http://readthedocs.org/
http://seleniumhq.org/
https://secure.blitz.io/pricing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://help.opscode.com/kb/otherhelp/build-a-django-stack
http://help.opscode.com/kb/otherhelp/build-a-django-stack
http://en.wikipedia.org/wiki/Literate_programming
http://en.wikipedia.org/wiki/Literate_programming

way of designing now to ensure we’re as flexible as possible and as current as we can be. This will
take some research, but my feeling is that we need to bring a designer in who designs using
modern methods - currently we have struggled in terms of time for experimentation and I believe
that the above will be the fastest way to do it. A designer these days can’t just ‘design’ and they
need to have enough technical competence to be able to understand how the front-end works,
especially using Ajax

Things to look at...

Susy (CSS design stuff). Works with older
browsers also

http://susy.oddbird.net

Javascript library (could also be under
frameworks)

http://script.aculo.us/

Backbone http://documentcloud.github.com/backbone/

Servers, management, monitoring etc

In terms of servers traditionally we have just rented dedicated servers. Over the past few years we
have started utilising the Amazon ‘cloud’ with their Amazon Web Services. This is a really useful
service for scaling quickly up and down, but it can be expensive if not watched carefully. What we
need to do, I believe, is look at a hybrid system with some dedicated servers as well as utilising a
cloud service for scaling. Some key aspects to look at here is:

●​ Easy mirroring of servers and server data both within a data centre as well as between data
centres (for redundancy)

●​ Management of these servers. We need to look at getting a sysadmin to manage the
security and stability of our servers as well as the ongoing management

●​ We need to look at monitoring software to monitor the applications as well as the server and
services on each server.

●​ We need to look at how to create applications which scale

Things to look at...

Distributed server monitoring http://www.zabbix.com/

Server Density monitoring http://www.serverdensity.com/

getting around an AWS failure: http://news.ycombinator.com/item?id=2477877

Server monitoring (Spotify use them) http://newrelic.com/

Protecting us - Scaling, Distribution, backups and Failover

Historically we have created applications where one server would be more than enough. As our

http://susy.oddbird.net/
http://script.aculo.us/
http://www.zabbix.com/
http://www.serverdensity.com/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://news.ycombinator.com/item?id=2477877
http://newrelic.com/

number of users grow, and the type of applications that we create become more complex we have a
need to ensure that our applications can scale well and that if there is an outage or problem with a
server/provider that the application will continue to run from a backup system. In order to do this we
need to look at the following:

- Failover. Our applications must be able to run across different providers. We need systems that
will automatically failover but also systems that will ensure the consistency of data across
machines. I would like us to look at different failover systems, including DNS Failover.

- Backup. This is taking snapshots of the data that we have, on a regular basis, and storing them
somewhere.

- Scaling. Our applications need to be able to scale up (and down) easily so that if an application
starts to receive high load that another server will be used to start to take some of the load. Utilising
some services I understand that it is possible to automatically scale (such as using Amazon AWS)
and we need to look at this.

Things to look at...

Reliability, Availability and Scale (article) http://afeinberg.github.com/2011/06/25/reliabilit
y-availability-scale-interlude.html

Static sites to improve load http://highscalability.com/blog/2011/8/22/strateg
y-run-a-scalable-available-and-cheap-static-site
-on-s.html

Company-specific Technology

After creating this document I think there are only a couple of items that are specific to this company

●​ VXML. We need a greater knowledge of VXML. Someone needs to learn about it
●​ Twilio.com. This looks really useful for creating web/telecoms apps
●​ Phono.com. Similar to Twilio
●​ Automated Dialing. We need to find a method of automated dialing so that we can test (and

stress test) our applications
●​ Scrapers. We need to find the best way to scrape data as well as to create a tool which can

work similar to a macro recorder, such as how Mozenda works
●​ Sitebuilders. We need to have a method of creating sitebuilders, compelte with the ability to

switch templates easily. Code should be centralised and shared, so that any change will be
spread across all sites

Things to look at...

Scrapy - useful scraping framework for Python http://scrapy.org/

Beautiful Soup - scraping framework for Python http://www.crummy.com/software/BeautifulSoup
/

Twilio http://www.twilio.com

Phono http://www.phono.com

http://afeinberg.github.com/2011/06/25/reliability-availability-scale-interlude.html
http://afeinberg.github.com/2011/06/25/reliability-availability-scale-interlude.html
http://highscalability.com/blog/2011/8/22/strategy-run-a-scalable-available-and-cheap-static-site-on-s.html
http://highscalability.com/blog/2011/8/22/strategy-run-a-scalable-available-and-cheap-static-site-on-s.html
http://highscalability.com/blog/2011/8/22/strategy-run-a-scalable-available-and-cheap-static-site-on-s.html
http://scrapy.org/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.twilio.com
http://www.phono.com

VoiceXML http://en.wikipedia.org/wiki/VoiceXML

Other technologies

The following are some links and technologies that look interesting and worth looking at:

Python module for async processing
automation

http://celeryproject.org

messaging broker backend - used to exchange
of information between the app(s)

http://www.rabbitmq.com

Programmable email http://mailgun.net/

Python Requests http://docs.python-requests.org/en/latest/index.
html

Web Sockets http://en.wikipedia.org/wiki/WebSocket

Asynchronous Programming and Twisted
(python) and discussion

http://news.ycombinator.com/item?id=2904539

Not a technology, but a useful helpdesk app http://www.sproutit.com/

Historious Blog - some interesting stuff about
how they built their system

http://blog.historio.us/

Sites / Links to look at

Here are a few sites that make good, and useful, reading:

High scalability http://highscalability.com

Hacker News http://news.ycombinator.com

Hacker News Discussion on technologies
people worked on in 2010

http://news.ycombinator.com/item?id=2053956

What have you found that is useful?

If you’ve read this far and want to comment (even if its to tell me what an idiot I am!!), feel free to
email me at adrian.teasdale@gmail.com or comment on Hacker News about technologies that you
have found useful:

http://news.ycombinator.com/item?id=3025913

We are looking for at least one full time developer and a great UI designer to join us, even remotely

http://en.wikipedia.org/wiki/VoiceXML
http://celeryproject.org/
http://www.rabbitmq.com/
http://mailgun.net/
http://docs.python-requests.org/en/latest/index.html
http://docs.python-requests.org/en/latest/index.html
http://en.wikipedia.org/wiki/WebSocket
http://news.ycombinator.com/item?id=2904539
http://www.sproutit.com/
http://blog.historio.us/
http://www.assembla.com
http://news.ycombinator.com/item?id=2053956
mailto:adrian.teasdale@gmail.com
http://news.ycombinator.com/item?id=3025913

