Bazel Constraint Equality

Author: schmitt@google.com
Reviewers:
e jcater@google.com (LGTM)
Last updated: February 12th, 2019 [shelved]
Status: reviewed, implementation deferred until needed

Platform definitions are a new mechanism in Bazel that replaces (often language-specific) flags
that describe target and execution environments (for example --cpu, --host_cpu, --crosstool_top,
--javabase, ...). They are instrumental in new functionality like allowing Bazel to choose an
execution platform per action and performing toolchain selection. However their introduction to
repositories building with Bazel could cause significant disruption of existing workflows and
conflicts between imported repositories.

The main challenge we expect once platforms are in use is definition fragmentation, not of
platforms themselves but of constraint settings and their values. Where previously there were
informal agreements on the validity and meaning of values for flags like --cpu', these meanings
will now be explicitly encoded in repositories in the form of constraints. While the Bazel team
plans to provide a central repository to store constraints, we expect many repositories to define
their own, particularly for specialised values. This will eventually lead to some repository
importing two others, each of which defines a constraint A and B respectively such that A and B
are semantically equivalent. Now if a platform with A is used, toolchains and select() statements
referring to B will not match and vice versa - even though they should.

This document proposes a solution to constraint definition fragmentation which aims to be least
invasive and onerous.

Background

Platform

A platform in Bazel is defined in a BUILD file and is a collection of constraint values (which in
turn come from constraint setting enumerations). Here's a brief example, find a lot more

information in the platform documentation and design doc:

' Which have caused significant headaches when there was fragmentation, such as in the case of
macOS.

https://docs.bazel.build/versions/master/platforms.html
https://docs.google.com/document/d/1-G-VPRLEj9VyfC6VrQBiR8To-dZjnBSQS66Y4nargGM
https://github.com/bazelbuild/bazel/pull/7062
https://github.com/bazelbuild/bazel/pull/7062

constraint_setting(name = 'java')

constraint_value(
name = 'java7',
constraint_setting

‘:java')

constraint_value(
name = 'java8',
constraint_setting

‘:java')

platform(
name = 'linux_x86"',
constraint_values = [
'@bazel_tools//platforms:linux"',
'@bazel_tools//platforms:x86 64",
':java8',

D)

Platforms are propagated in Bazel's configuration and used to determine for each build target
what environment it targets and what environment its toolchain(s) can be executed on.
Multi-architecture use cases are not represented as a single platform in the configuration but a
collection of multiple platforms.

Toolchain

A toolchain rule is a rule (native or Starlark) emitting a provider which describes a set of tools
and their configurations such that they can be used with actions. A toolchain indicates that it is
compatible with certain target and execution platforms by referencing their constraint values.
Toolchains are described in the toolchain documentation.

Proposal

To simplify definition and implementation of this proposal, as well as understanding of the
resulting code in users repository it is limited to solving the problem of constraint value
fragmentation only. Constraint setting fragmentation, while theoretically possible should be rare.
If a compelling use case comes up the method proposed can be extended to cover constraint
settings as well.

Constraint Value Equality

In cases where a repository owner ends up with two distinct (in terms of Bazel path) but
semantically equivalent constraint values we allow them to explicitly define that equality in their
WORKSPACE file using a constraint_value_alias(from, to) rule:

https://docs.bazel.build/versions/master/toolchains.html

constraint_value_alias("@repoA//some/path:longdash", "@repoB//config/package:em")

This will cause Bazel to match any reference to "@repoA//some/path:longdash" if
"@repoB//some/path:em" is present in the platform and vice versa. So a select() branch will
match a platform containing "@repoA//some/path:longdash" regardless of whether it is keyed on
"@repoA//some/path:longdash” or "@repoB//some/path:em".

Transitive Aliases

More generally (and to support scenarios where many repositories are imported in parallel or
repository A imports repository B which imports repository C and so forth?) more than two
constraint values can map to the same semantic meaning. In such cases multiple
constraint_value_alias instances can refer to the same constraint value, effectively creating
equivalence classes with more than two members. Bazel will evaluate all constraint_value_alias
statements across all recursively imported WORSPACE files and compile the set of global
constraint value equivalence classes.

Note that repeated aliases and "reverse" aliases are perfectly fine and treated as no-ops (they
don't modify the equivalence class).

For example:

//:WORKSPACE
constraint_value_alias("@repoA//some/path:robert", "@repoB//config:robert")
constraint_value_alias("@repoB//config:robert"”, "//my/definitions:bob")

@repoB//:WORKSPACE
constraint_value alias("//config:robert"”, "@repoD//names:rob")

Results in all of "@repoA//some/path:robert”, "@repoB//config:robert", "//my/definitions:bob" and
"@repoD//names:rob" being in the same equivalence class (i.e. if one of them is in a platform
then any of them match that platform).

Branch Collisions

Using constraint aliases it is possible to change the behavior of constraint matching in select()
statements and toolchain selection that have multiple branches matching a single constraint
value equivalence class. In these cases Bazel will behave just as if the same constraint value
had been used in multiple branches, with extra error information as necessary. For example:

2 Actually, recursive WORKSPACE evaluation doesn't exist yet - but it is being designed and implemented
and should support this functionality as outlined here.

https://github.com/bazelbuild/proposals/blob/master/designs/2018-11-07-design-recursive-workspaces.md

//:WORKSPACE

constraint_value_alias(
"@repoA//some/path:longdash",
"@repoB//config/package:em"

)

//foo/BUILD
config setting(

name = "longdash",

constraint_values = ["@repoA//some/path:longdash™])
config setting(

name = "em",

constraint_values = ["@repoA//some/path:em"])

some_rule(
name = "foo",
srcs = select({
":longdash": [longdash.txt],
"rem": [em.txt]

1)

When //foo:foo is analysed Bazel will raise an error noting that two branches of the select
statement have semantically equivalent keys, with a pointer to where the equivalence was
defined.

Implementation

This is a draft, especially considering recursive WORKSPACE evaluation doesn't exist yet.

The new constraint_value_alias starlark function is registered in the WorkspaceFactory. It
functions very similarly to the existing register toolchains function in that it causes alias
registrations to be attached to the //external package which can be retrieved by its SkyKey. Just
like for toolchain resolution the data is then queried by the ConfiguredTargetFunction and
attached to the RuleContext for availability in rule processing.

The aliases can be used to construct platform() instances, thus any comparison with a
platform's constraint values would take the aliases into account; this covers both select() branch
comparisons and toolchain resolution. At this point we can also enforce that all aliases in the
same equivalence class share the same constraint setting.

https://source.bazel.build/bazel/+/bf05bc2aec83f6ade77cd6cb757aa2000ae26f00:src/main/java/com/google/devtools/build/lib/packages/WorkspaceFactory.java;l=443
https://source.bazel.build/bazel/+/master:src/main/java/com/google/devtools/build/lib/skyframe/RegisteredToolchainsFunction.java;l=115
https://source.bazel.build/bazel/+/5edfa14ea4705dd4709e62e5d02d560ad4637b02:src/main/java/com/google/devtools/build/lib/skyframe/ConfiguredTargetFunction.java;drc=9826379486cb663c436e42535f729211f1f4721f;bpt=1;l=350
https://source.bazel.build/bazel/+/5edfa14ea4705dd4709e62e5d02d560ad4637b02:src/main/java/com/google/devtools/build/lib/analysis/ConfiguredTargetFactory.java;drc=9826379486cb663c436e42535f729211f1f4721f;bpv=;bpt=1;l=307
https://source.bazel.build/bazel/+/master:src/main/java/com/google/devtools/build/lib/rules/platform/Platform.java;bpt=0;l=71

Aliases are stored as the labels mapped (not targets, to save memory) and the location where
the mapping was defined (kept to allow better error messages and debugging):

class ConstraintAliases {
ConstraintAliases(Map<Label, Label> constraintAliases) { ... }

/**
* Returns the canonical label that the given label resolves to or the given
* label if it was not registered as an alias.
*/
Label resolve(Label constraintValue) {
if (constraintAliases.contains(constraintValue)) {
return constraintAliases.get(constraintValue);
}

return constraintValue;

}

static class Builder {
Set<Set<Label>> equivalences = new HashSet<>();

// TODO: Also store original mapping location for debugging.
void addAlias(Label from, Label to) {
ImmutableSet.Builder<Label> newEquivalence = ImmutableSet.builder()

.add(from)
.add(to);
for (equivalence : equivalences) {
if (equivalence.contains(from) || equivalence.contains(to)) {

newEquivalence.addAll(equivalence);
equivalences.remove(equivalence);
¥
}

equivalences.add(newEquivalence.build());

}

ConstraintAliases build() {
ImmutableMap.Builder<Label, Label> mappings = ImmutableMap.builder();
for (equivalence : equivalences) {
Label canonical = equivalence.stream()
.min(11, 12 -> 11.toString().compareTo(l2.toString()))
.get();
for (Label label : equivalence) {
mappings.put(label, canonical);
}
}

return new ConstraintAliases(mappings.build());

In the select() implementation, when detecting conflicting branches the error message is
extended by alias information in case this played a role in causing the conflict.

Rollout Plan

The new functionality can be added to Bazel without any guards as it doesn't modify existing
behavior.

	Bazel Constraint Equality
	Background
	Platform
	Toolchain

	Proposal
	Constraint Value Equality
	Transitive Aliases
	Branch Collisions

	Implementation
	Rollout Plan

