
GSoC 2025 Proposal – Apache Beam: ML 
Vector DB/Feature Store Integrations 
(Pinecone & Tecton Connectors) 

Personal Introduction & Information 
 
Name : Wesam Abed 
Email : wesamwaleed22@gmail.com 
Phone : +972595065849 
Address : Israel WestBank Ramallah 
Linkedin : www.linkedin.com/in/wesam-abed-412a25243 

Wesam Abed is a motivated software engineer with a Bachelor’s degree in Computer 
Engineering from Birzeit University. I have professional experience developing backend systems 
at 525K, MenaForce, and Asal Tech, where I honed my skills in building scalable, distributed 
applications. Over the years, I have specialized in backend development with a focus on 
distributed systems and scalable architecture. 

My technical expertise includes: 

●​ Programming Languages & Frameworks: Proficient in Java and Python, with 
extensive experience in building web services and data pipelines.​
 

●​ Databases & Search Engines: Hands-on experience with Elasticsearch, MongoDB, 
Amazon DynamoDB, and PostgreSQL, enabling me to design efficient data storage and 
retrieval solutions.​
 

●​ Cloud & DevOps: Proficient with AWS cloud services and containerization/orchestration 
tools such as Kubernetes and Docker, ensuring that solutions are cloud-ready and easily 
deployable.​
 

I have applied these skills in complex projects, including an AI-driven fraud detection system, 
a multilingual chatbot platform, and a drone delivery simulation. In the fraud detection 
project, I worked on real-time data ingestion and anomaly detection pipelines; for the chatbot, I 
integrated NLP models and managed multi-language support; and the drone simulation required 
coordinating real-time events in a distributed environment. These projects demanded robust and 
scalable back-end architectures, reinforcing my ability to deliver high-performance solutions. I 
am fully comfortable working in Python (which is ideal for this Apache Beam project) and equally 

mailto:wesamwaleed22@gmail.com
http://www.linkedin.com/in/wesam-abed-412a25243


adept in Java, which will help in understanding Beam’s multi-language environment. With this 
background, I am well-prepared to contribute to Apache Beam by implementing new I/O 
connectors for cutting-edge ML infrastructure. 

Project Abstract 
Project Title: Apache Beam Connectors for Pinecone Vector DB and Tecton Feature Store 

This project aims to enhance Apache Beam’s machine learning pipeline capabilities by 
developing new I/O connectors (source and sink) for Pinecone and Tecton. Pinecone is a 
managed vector database service for high-dimensional embeddings, and Tecton is a feature 
store platform for ML features. Currently, Apache Beam’s Python SDK lacks native connectors 
for these systems, which are increasingly vital in ML workflows like feature engineering and 
retrieval-augmented generation. The proposed work will implement Beam transforms to read 
from and write to Pinecone and Tecton, enabling seamless integration of vector similarity 
search and feature store operations into Beam pipelines. Over the standard 12-week timeline, I 
will deliver production-quality connectors (in Python), along with thorough tests, documentation, 
and performance benchmarks. By the end of the project, Apache Beam users will be able to 
easily incorporate Pinecone and Tecton into their batch or streaming pipelines, unlocking new 
use cases in AI and ML on a unified, scalable data processing framework. 

Problem Statement and Motivation 
Apache Beam is a powerful unified model for defining data processing pipelines, widely used for 
batch and streaming workloads. In machine learning use-cases, Beam can be employed for 
tasks like feature generation, embedding computation, and data preparation. However, as of 
early 2025, Beam integrates with only a limited set of feature stores and vector databases, 
which constrains its utility in advanced ML pipelines​ 

issues.apache.org 
. Critical ML infrastructure components such as vector databases and feature stores are not yet 
supported with out-of-the-box connectors. This gap forces developers to either create custom 
pipeline stages outside of Beam or avoid Beam for those portions of the pipeline, resulting in 
fragmented systems. 

Two prominent technologies illustrate this gap: Pinecone and Tecton. Pinecone is a fully 
managed vector database platform purpose-built to handle high-dimensional data (vector 
embeddings) with advanced indexing and similarity search capabilities​ 

datacamp.com 
. Vector databases like Pinecone allow machine learning applications to store embeddings and 
perform fast nearest-neighbor queries for tasks such as semantic search and recommendation. 
Tecton, on the other hand, is a feature store that manages, stores, and serves machine 
learning features in a scalable and reliable way​ 

https://issues.apache.org/jira/browse/GSOC-279#:~:text=Apache%20Beam%27s%20Python%20SDK%20provides,enable%20these%20ML%20use%20cases
https://www.datacamp.com/tutorial/mastering-vector-databases-with-pinecone-tutorial#:~:text=Pinecone%20is%20a%20managed%20vector,dimensional%20data


getindata.com 
. Feature stores like Tecton provide a central repository for engineered features used during 
model training and online inference, ensuring consistency and low-latency access to feature 
values. 

These systems are increasingly essential for modern AI applications: Pinecone enables 
retrieval-augmented generation (RAG) and similarity search over embeddings, while Tecton 
streamlines feature engineering and online feature serving for ML models. Without native Beam 
connectors, integrating Beam with a vector DB or feature store requires ad-hoc solutions. The 
motivation for this project is to empower Apache Beam users to incorporate Pinecone and 
Tecton directly into their data pipelines. By providing official Beam I/O connectors, we can 
make Beam a one-stop solution for complex ML data workflows. This will enable use cases 
such as: 

●​ Feature Engineering Pipelines: Compute features in Beam and directly write to 
Tecton for serving, or read from Tecton to gather training data in Beam.​
 

●​ Embedding Pipelines for RAG: Generate embeddings in a Beam pipeline and upsert 
them into Pinecone, or query Pinecone from Beam to fetch relevant vectors for 
downstream processing.​
 

●​ Unified Batch and Streaming Workflows: Use Beam’s unified model to handle both 
batch feature backfills and streaming updates to the feature store or vector DB, using the 
same connectors.​
 

By addressing the current lack of connectors, this project will bridge Apache Beam with 
state-of-the-art ML data stores, significantly expanding Beam’s capabilities in AI/ML scenarios​ 

issues.apache.org 
. It aligns with the Apache Beam community’s goal of building a “rich ecosystem of connectors” 
for ML applications​ 
issues.apache.org 
, and it will help Apache Beam stay relevant as an ML data processing framework. This 
integration will save developers time (no need to write custom integration code) and ensure that 
performance and scalability are handled in a consistent, community-vetted manner. 

Proposed Deliverables 
By the end of the GSoC 2025 coding period, the following deliverables will be completed: 

●​ Pinecone Connector (Source & Sink): Implementation of Apache Beam transforms to 
interact with Pinecone:​
 

https://getindata.com/blog/7-most-popular-feature-stores-in-2023/#:~:text=Tecton%20is%20a%20feature%20store,processes%20related%20to%20feature%20ingestions
https://issues.apache.org/jira/browse/GSOC-279#:~:text=Apache%20Beam%27s%20Python%20SDK%20provides,enable%20these%20ML%20use%20cases
https://issues.apache.org/jira/browse/GSOC-279#:~:text=out%20a%20rich%20ecosystem%20of,enable%20these%20ML%20use%20cases


○​ WriteToPinecone PTransform: A sink that takes a PCollection of vector data 
(embeddings with IDs and metadata) and upserts them into a Pinecone index. It 
will utilize Pinecone’s Python client or REST API for efficient batch upsert 
operations.​
 

○​ ReadFromPinecone PTransform: A source that allows reading data from 
Pinecone. This may support use cases such as fetching vectors by IDs or 
querying by an embedding (e.g., performing a similarity search for each input 
query vector). The design will consider how to represent query results (nearest 
neighbors) as a PCollection.​
 

●​ Tecton Connector (Source & Sink): Implementation of Beam transforms for Tecton:​
 

○​ ReadFromTecton PTransform: Allows retrieval of feature values from Tecton’s 
feature store. For example, given a PCollection of entity IDs or timestamps, this 
transform will call Tecton’s API (using the Tecton Python client or HTTP API) to 
fetch the corresponding feature vectors or feature values. This is useful for 
creating training datasets or enriching data within a pipeline.​
 

○​ WriteToTecton PTransform: A sink transform to write or push computed features 
into Tecton. This will use Tecton’s provided interfaces to ingest batch feature data 
or update the online store. If Tecton offers a batch ingestion API or offline store 
update path, the connector will leverage that.​
 

●​ Integration Tests & Example Pipelines: A suite of tests to verify the correctness of 
each connector:​
 

○​ Unit tests with mocked Pinecone/Tecton clients to simulate API responses and 
ensure edge cases (empty collections, error handling, etc.) are handled.​
 

○​ Integration tests that run the Beam connectors against a real or simulated 
Pinecone index and Tecton environment (using test API keys or local instances if 
available) to ensure end-to-end functionality.​
 

○​ Example pipeline code in Beam’s examples directory (or documentation) 
demonstrating typical usage of the new connectors (e.g., a pipeline that reads 
from Tecton, does some processing, and writes to Pinecone).​
 

●​ Documentation: Comprehensive documentation for each connector:​
 

○​ User guide pages on the Apache Beam website documenting how to use 
ReadFromPinecone, WriteToPinecone, ReadFromTecton, and 
WriteToTecton (including code snippets and explanation of configurations, 



such as connection parameters, authentication, batch sizing, etc.).​
 

○​ In-line code documentation (docstrings and comments) following Beam’s 
contribution guidelines.​
 

○​ A design document (if required by the Beam community) detailing the approach 
and API of the connectors, to be shared on the Beam dev mailing list for 
feedback.​
 

●​ Performance Benchmark Report: An evaluation of the connectors’ performance and 
scalability. This will include measurements of throughput and latency for reading/writing 
to Pinecone and Tecton under various conditions (e.g., batch sizes, number of 
concurrent workers) and suggestions for tuning. The results will ensure that the 
connectors meet practical performance requirements for typical ML pipeline sizes.​
 

●​ Contribution to Beam Ecosystem: All code will be contributed via Apache Beam’s 
repository (as pull requests). The ultimate deliverable is the merging of the Pinecone 
and Tecton connectors into Apache Beam’s codebase, making them available in a 
future Beam release. Success here includes adhering to the community’s code 
standards, passing code reviews, and receiving approvals from project committers.​
 

Each deliverable will be developed in alignment with Beam’s standards for I/O connectors (e.g., 
respecting the Beam I/O APIs and patterns). By producing both source and sink transforms for 
each system, we ensure that Beam pipelines can both ingest data from and output data to 
Pinecone and Tecton seamlessly. This dual capability (read/write) is crucial for closed-loop 
pipelines (for instance, generating embeddings and then using them for retrieval within Beam, or 
reading features, transforming them, and writing new features back). 

Technical Approach and Architecture 
Overall Design: The connectors will be implemented in Apache Beam’s Python SDK, as 
Python is well-suited for integrating with the available client libraries for Pinecone and Tecton. 
Given my proficiency in Python, I will focus on writing idiomatic, efficient Python transforms. The 
design will follow Apache Beam’s established patterns for I/O connectors, which typically involve 
implementing PTransform classes with underlying DoFn or Impulse/Read sources for 
reading, and DoFn/Write operations for sinks. Thread-safety, checkpointing (for streaming), 
and efficient I/O will be key considerations. 

Pinecone Connector Architecture: 

●​ WriteToPinecone: I will implement this as a PTransform (likely using ParDo internally) 
that takes in a PCollection of items (each item containing an ID, vector, and optional 
metadata) and writes them to a Pinecone index. The connector will use the Pinecone 



Python client for ease of integration. For performance, the writing will be batched: 
Beam’s GroupIntoBatches can be used to batch a set of items, then a DoFn will 
upsert a batch of vectors in one API call (to amortize network overhead). The transform 
will handle authentication (using an API key and environment configuration for 
Pinecone – these can be provided via PipelineOptions or transform parameters). It 
will also include error handling and retry logic (leveraging Beam’s retry decorators or 
manual try-except) to gracefully handle transient network issues or rate limits. If 
Pinecone returns failures for specific items, the connector can either retry or produce 
meaningful error logs/metrics. The design will ensure idempotency where possible – for 
example, upserting vectors is naturally idempotent in Pinecone (same ID will overwrite), 
which is good for exactly-once semantics in Beam if needed.​
 

●​ ReadFromPinecone: Reading from Pinecone can be approached in a couple of ways:​
 

1.​ Parallel Queries: If the use-case is to perform similarity searches (e.g., given a 
query vector or set of query vectors), the connector can be a simple ParDo that, 
for each input query, calls Pinecone’s query API and emits the results (nearest 
neighbor IDs and scores). This would allow a pipeline stage like pcoll | 
"QueryPinecone" >> ReadFromPinecone(query_fn=...). In this mode, 
the transform acts more like a map operation using Pinecone’s service. This 
could be implemented as a DoFn that calls index.query(...) for each 
element.​
 

2.​ Full Dataset Read: If needed, the connector could support reading all vectors 
from a Pinecone index (for example, to migrate or analyze them). Pinecone’s API 
provides methods to fetch vectors by ID or list all IDs. We can implement a Beam 
UnboundedSource or BoundedSource that enumerates IDs (possibly using 
pagination if Pinecone supports listing in pages) and reads all data. This would 
be a more complex source transform but useful for batch pipelines. Initially, the 
project will focus on the first approach (parallel queries or reads by keys) since it 
covers common ML scenarios; a full-index scan feature can be added if time 
permits.​
 

●​ Data Structures and Output: The Pinecone query results (for a search) would likely be a 
list of nearest neighbors (ID and similarity score, plus maybe metadata). We’ll define a 
Python object or a Beam Row to represent this (e.g., an object with fields: query_id, 
result_id, score, metadata). For the sink, the input might be a tuple (id, vector, metadata) 
or a small custom class; the transform will be documented to specify the expected input 
format.​
 

Tecton Connector Architecture: 



●​ ReadFromTecton: Tecton usage typically involves retrieving feature values for given 
entities or events. Using the Tecton Python client (or their REST API), we can fetch 
features from the online feature store. The ReadFromTecton PTransform might accept 
a PCollection of “feature requests” (each could be a key or a composite key like 
(entity_id, timestamp) depending on whether we want online or offline retrieval). For 
each request, a DoFn will call Tecton’s get_features() method (or similar) to retrieve 
the feature vector. The result (a set of feature name-value pairs) will be output as a 
dictionary or a Beam Row with fields for each feature. This connector will manage 
authentication via API keys and endpoint URLs (provided by the user as parameters). 
Just like with Pinecone, batching can improve throughput: if the API supports fetching 
multiple entities in one call, the connector will batch requests (e.g., group a set of entity 
IDs and retrieve features for all in one API call). This would significantly improve 
performance for batch pipelines.​
 

●​ WriteToTecton: Writing to a feature store might involve calling an ingestion API or writing 
to a particular offline store that Tecton monitors. I will research Tecton’s capabilities for 
ingesting data. If Tecton offers a direct API to push new feature values (for example, to 
the offline store or to an online store via an HTTP endpoint), the connector will use that. 
Possibly, Tecton could ingest data from a stream or file – if so, the Beam sink could 
prepare data in the required format. For instance, if Tecton uses Kafka or Kinesis for 
streaming ingestion, Beam could write to that pipeline (though that might be out of 
scope; we likely assume a direct API or library method exists). The WriteToTecton 
transform will take a PCollection of feature data (perhaps key-value maps of feature 
names to values, along with entity IDs and timestamps) and send them to Tecton. 
Ensuring exactly-once or idempotent writes will be important (maybe using upsert 
semantics if available, or careful coordination if necessary). As with Pinecone, errors 
from Tecton’s API will be handled with retries and clear logging.​
 

●​ Schema Considerations: Feature stores like Tecton have predefined feature definitions. 
The connector will need to interface with features that are already defined in Tecton. The 
user might have to supply the feature service or feature table name that they want to 
read from/write to. The transforms will be designed with parameters for things like Tecton 
workspace, feature service name, etc. Internally, the connector will map the Beam data 
to Tecton’s data model (for example, constructing the request payload for 
get_features or push_features accordingly). I will ensure the connector is flexible 
enough to handle typical feature schemas, possibly by allowing the user to pass a 
schema or letting Tecton’s client return data in a generic structure.​
 

Common Architectural Considerations: 

●​ Scalability: Both connectors will be designed to run in a distributed manner. Beam will 
parallelize the operations across workers. For Pinecone queries or Tecton fetches, each 
worker can handle a subset of queries in parallel. If the Python SDK’s runtime 



environment supports multithreading or async, we may utilize async API calls or thread 
pools to further increase throughput (for example, using Python’s asyncio or 
concurrent futures in a DoFn to allow multiple outstanding requests). Beam’s model also 
allows us to use a RestrictiveSplittableDoFn for reading if needed, but given the nature 
of these APIs (external service calls), simple parallel calls might suffice.​
 

●​ Latency vs Throughput: We will test different batch sizes for writes and perhaps for 
read (if multiple fetch in one call) to find a good balance. The connectors might expose 
tuning knobs (e.g., a parameter for batch size or query concurrency) so that users can 
adjust based on their use case (small real-time queries vs. large batch sync).​
 

●​ Fault Tolerance: Beam’s fault-tolerance (retries on failure, possible reprocessing on 
worker restart) will be taken into account. Upserts to Pinecone are idempotent by design 
(same ID can be written again). For Tecton, if repeated writes could duplicate data, we 
will document that the pipeline may need deduplication logic unless the Tecton API 
handles it. The connectors will integrate with Beam’s checkpointing/watermark 
mechanics if in streaming mode (for instance, if reading from Tecton’s online store in a 
streaming loop, we might not use it that way but if so, ensure correct watermark 
progression).​
 

●​ Security: Both Pinecone and Tecton require authentication (API keys or tokens). The 
connectors will not hard-code any sensitive info; instead, they will accept credentials via 
configuration (PipelineOptions or environment variables that Beam can pick up). We will 
use Beam’s recommended practices for handling secrets (possibly using 
apache_beam.io.filesystems if needed to read from a secure file, or just direct 
options).​
 

●​ Architecture Diagram: (If this were a longer document, an architecture diagram would 
illustrate how data flows from Beam to Pinecone/Tecton and back, but in text: The data 
flows from PCollection -> connector transform -> external service (Pinecone/Tecton) -> 
back to PCollection for sources. Each connector acts as a bridge between Beam’s 
pipeline and the external system’s API.)​
 

Given my strong background in distributed systems and scalable architecture, I will apply those 
principles here. For example, my experience with Elasticsearch (another distributed data store) 
gives me insight into indexing and querying performance, which is analogous to Pinecone’s 
usage for vectors. I will ensure the connectors use bulk operations and parallelism effectively, 
similar to how one would efficiently index documents in Elasticsearch or fetch batches of results. 
Additionally, my familiarity with AWS and cloud infrastructure means I understand the network 
and deployment environments in which these connectors will run (possibly on Dataflow or Flink 
runners in the cloud), so I will design with high-latency networks and large scale in mind. 



Testing and Benchmarking Strategy 
Testing is crucial for connectors that interact with external systems. I plan a multi-tier testing 
approach: 

●​ Unit Testing with Mocks: For each connector, I will write unit tests that use mock 
objects for the Pinecone and Tecton clients. For example, using Python’s 
unittest.mock, I can simulate the Pinecone index’s upsert and query methods to 
return expected responses. Similarly, mock the Tecton client’s get_features or 
ingestion calls. These tests will cover:​
 

○​ Basic success path: e.g., writing a small batch of vectors yields the expected API 
calls.​
 

○​ Error handling: simulate API exceptions or partial failures and verify the 
connector retries or handles the error as designed.​
 

○​ Edge cases: empty PCollection input (should result in no calls but no errors), 
extremely large vectors or feature values (ensure no serialization issues in 
Beam), invalid user parameters (e.g., missing index name or feature service 
name should raise a meaningful error).​
 

●​ Integration Testing: I will set up integration tests that run the actual connector code 
against a real instance of the services:​
 

○​ For Pinecone, I can use a Pinecone trial or free tier to create a test index. The 
integration test (likely marked as ignored or optional in CI due to external 
dependency) would configure the Pinecone API key and environment, then run a 
Beam pipeline that writes a few vectors and reads them back. We will verify that 
the data round-trips correctly (i.e., what’s written can be read via query or fetch). 
If running as part of automated tests is not feasible (due to external calls), I will at 
least perform these tests manually and include the results and perhaps provide a 
way for maintainers to run them.​
 

○​ For Tecton, since it’s a commercial feature store, full integration testing is trickier. 
I will explore if Tecton offers a sandbox or open-source variant (Tecton was built 
by creators of Uber’s Michelangelo; an open alternative is Feast, but we focus on 
Tecton specifically). If a Tecton trial environment is available, I will use it to test 
reading and writing of dummy features. Alternatively, I might stub the HTTP API: 
for example, run a local server that mimics the Tecton API endpoints (this could 
be done with Flask or a tool like responses library to intercept HTTP calls). The 
goal is to ensure our connector’s logic is correct against something that 
resembles the real system.​
 



○​ Additionally, I will test the connectors in a real Beam runner (not just 
DirectRunner). Using Google Dataflow or another runner with the connectors 
would ensure there are no serialization or runtime issues in distributed execution. 
This might be done late in the project when connectors are ready (e.g., deploy a 
pipeline on Dataflow that writes to Pinecone).​
 

●​ Performance Benchmarking: To measure performance, I will create test pipelines that 
push the connectors to handle larger loads:​
 

○​ For Pinecone: measure throughput by writing, say, 10k vectors of dimension 100 
and see how many per second can be ingested with batch size N. Vary N (maybe 
50, 100, 1000) and measure. Similarly, measure query latency for single vs 
batched queries (if applicable).​
 

○​ For Tecton: measure how many feature fetches per second the connector can do 
when grouping (e.g., fetch 100 entities per call vs 1 per call).​
 

○​ Use Beam’s Metrics API inside the DoFns to record timing (e.g., how long each 
external API call takes, count of records processed) and aggregate those after 
pipeline completion.​
 

○​ These benchmarks will not only validate performance but also guide default 
settings (for example, if batch size 100 yields 5x throughput of batch size 1, we 
might default to 100).​
 

○​ I will document the environment of tests (machine specs, network) to 
contextualize the numbers.​
 

●​ Quality Assurance: Besides automated tests, I will perform code reviews with mentors 
and possibly get community members to try out the connectors on sample data. Early in 
development, I plan to write a small demo pipeline (perhaps a dummy “Hello 
Pinecone/Tecton” pipeline) to manually run and verify behavior. This iterative testing will 
catch issues like resource leaks (ensuring clients are properly closed if needed) or 
corner-case exceptions.​
 

●​ Benchmark Success Criteria: The connectors should be able to handle at least on the 
order of several thousand records per second in a typical environment (for writes), 
without significant degradation, and scale linearly with more workers. Latency for 
individual read queries should ideally remain in the low hundreds of milliseconds (mostly 
dependent on external service). If any performance issue arises (for instance, if using 
Python introduces GIL contention), I’ll investigate optimizations (like releasing GIL in I/O 
waits, or using asynchronous requests).​
 



●​ Testing Documentation: I will include documentation on how to run the tests, especially 
if credentials are needed for integration tests (with warnings to not commit secrets). The 
aim is that future maintainers can easily run and extend these tests when Pinecone or 
Tecton versions update.​
 

By following this testing strategy, we ensure that the connectors are robust, reliable, and 
performant. My experience in back-end and cloud environments has taught me the importance 
of testing under real-world conditions; for example, in the AI-fraud project, we extensively tested 
the pipeline with both typical and extreme data to ensure consistency. I will bring the same rigor 
to this project. 

Success Metrics 
To evaluate the success of this GSoC project, I will use the following metrics and criteria: 

●​ Feature Completion: All planned features (Pinecone source/sink and Tecton 
source/sink) are implemented and functional. Success means a user can use these 
connectors to accomplish real tasks (e.g., write a Beam pipeline that successfully writes 
to Pinecone and one that reads from Tecton).​
 

●​ Code Integration and Quality: The code meets Apache Beam’s contribution standards 
and is merged into the Beam repository. A key metric is passing the code reviews from 
mentors and the Beam community. Successful integration would be marked by the 
closure of the JIRA issue (Beam JIRA GSOC-279) and the connectors being included in 
the Beam codebase.​
 

●​ Testing Coverage: Achieve high test coverage (aiming for >90% of the new code). All 
unit tests and integration tests should pass. Additionally, no regressions or breaking of 
other Beam features (ensured by Beam’s existing test suite) – essentially a green build.​
 

●​ Performance Benchmarks: The connectors should meet baseline performance 
requirements. For instance, a metric might be: The Pinecone sink can ingest at least 
5,000 vectors/second on a single worker with batch size 100 (example figure; actual 
results will vary by environment). If the connectors significantly underperform common 
expectations, that would need addressing. Ideally, performance tests should 
demonstrate that the connector throughput scales with parallelism and that overhead 
introduced by Beam is minimal (within, say, 10-15% of what a raw client could do in a 
simple script).​
 

●​ Documentation & Usability: Documentation completeness is a metric: the presence of 
clear how-to guides and examples. Success is when a new user (e.g., a Beam 
contributor or mentor) can follow the docs to use the connector without needing to read 
the source. If during evaluation mentors can run the example and it works as 



documented, that’s a positive sign. Also, API simplicity can be a qualitative metric – for 
example, the ReadFromPinecone transform ideally should be as easy to use as 
existing connectors (like ReadFromMongoDB etc.). Feedback from the community (on 
the mailing list or PR comments) about the API design being user-friendly would indicate 
success.​
 

●​ Use-Case Validation: As a measure of the project’s value, I plan to demonstrate a 
realistic use-case pipeline that ties everything together (for instance, a mini pipeline that 
takes some text data, generates embeddings, writes them to Pinecone, then does a 
query from Pinecone to find similar items). If this end-to-end demo runs correctly and 
showcases the connectors working in concert, it’s a strong validation of success. The 
quality of this example (in terms of correctness and performance) is a metric as well.​
 

●​ Community Approval: While harder to quantify, an important success factor is positive 
engagement from the Apache Beam community. If by the end of the project, project 
mentors and community members express satisfaction (through comments or 
acceptance of the work), that indicates we met the expectations. In GSoC terms, a 
successful final evaluation from the mentors is the ultimate metric.​
 

●​ Future Maintainability: Another success criterion is that the connectors are 
maintainable and extendable. This can be measured by the clarity of code (for instance, 
mentor comments like “the code is well-structured” or no significant refactor requests). 
Also, if follow-up issues or improvements are identified and can be easily added (maybe 
someone suggests adding another method, and it’s straightforward), that means the 
foundation is solid.​
 

By these metrics, I expect the project to not only deliver the promised features but also to 
integrate smoothly into Apache Beam’s ecosystem, thereby ensuring long-term success beyond 
the GSoC period. 

Timeline 
Below is a 12-week timeline outlining the key phases and tasks of the project. (Assuming a 
start of the coding period in early June 2025 for GSoC and running 12 weeks through August 
2025.) 

Week Milestones & Deliverables 



Week 1 
(June 
1–7) 

Community Bonding & Planning: Finalize understanding of Pinecone and Tecton 
APIs. Engage with mentors and Apache Beam dev community to discuss the 
design approach. Set up development environment (Beam codebase, accounts for 
Pinecone/Tecton). Prepare a brief design draft for connectors and get initial 
feedback. 

Week 2 
(June 
8–14) 

Pinecone Connector – Setup & Initial Coding: Start implementing the Pinecone 
sink (WriteToPinecone). Define data model for inputs. Write basic version of the 
DoFn that calls Pinecone’s upsert. Also, implement authentication handling (e.g., 
reading API key from options). Begin a simple unit test for this functionality. 

Week 3 
(June 
15–21) 

Pinecone Sink Completion: Complete the WriteToPinecone transform with 
batching and retry logic. Write comprehensive unit tests (mocking Pinecone client). 
Simultaneously, start implementing ReadFromPinecone for basic query-by-ID 
functionality. By end of week, have a demo pipeline that writes sample vectors to 
Pinecone (possibly manual test with a real Pinecone instance). 

Week 4 
(June 
22–28) 

Pinecone Source (Read) Implementation: Expand ReadFromPinecone to 
support vector similarity queries. Implement it as a ParDo that takes a PCollection 
of query vectors and returns nearest neighbor results. Write unit tests for the 
reading logic (mocking query responses). Conduct an integration test of the full 
Pinecone connector: pipeline that writes then reads. Address any issues found. 

Week 5 
(June 
29–July 
5) 

Documentation & Polish for Pinecone: Write user-facing documentation for 
Pinecone connectors (usage examples, parameters). Refine error handling and 
edge cases based on feedback. If Pinecone connector development finishes early, 
begin exploratory coding for Tecton (especially understanding how to write to 
Tecton). Prepare for mid-term evaluation: ensure Pinecone connectors are in a 
solid state. 

Week 6 
(July 
6–12) 

Mid-term Evaluation & Buffer: This week marks roughly the mid-term. Complete 
any remaining Pinecone tasks: integration test results documented, performance 
tuning (maybe try different batch sizes). Submit Pinecone connector code for initial 
review by mentors. Receive mid-term evaluation feedback. If time permits, set up 
the Tecton environment (API keys, define a dummy feature in Tecton for testing). 

Week 7 
(July 
13–19) 

Tecton Connector – Read Implementation: Begin coding ReadFromTecton. 
Connect to Tecton’s API (or simulate if needed). Implement retrieval of features for 
a batch of entity keys. Focus on the offline/batch reading scenario first (since online 
inference read is similar). Write unit tests using a mock Tecton client (simulate 
feature data returned). Ensure the transform can output data in a structured format 
(e.g., dictionary of features per entity). 



Week 8 
(July 
20–26) 

Tecton Connector – Write Implementation: Implement WriteToTecton to push 
data to the feature store. This might involve formatting data and calling an ingestion 
API. Write tests for the write path (mocking the API response, ensuring data 
formatting is correct). If parts of Tecton integration are unclear (due to lack of full 
access), collaborate with mentors or consider fallback (maybe integrate with Feast 
as a proxy, but since proposal is specifically Pinecone/Tecton, focus on Tecton 
best-effort). By end of week, basic Tecton read & write code is written. 

Week 9 
(July 
27–Aug 
2) 

Integration Testing & Refinement for Tecton: Run an integration test for Tecton 
connector. Possibly use a trial Tecton account to test reading/writing a sample 
feature. Debug any issues (authentication, data formatting). Fine-tune error 
handling and add retry logic similar to Pinecone. Also, update documentation for 
Tecton usage (list required parameters like feature store name, how to supply API 
key). Start writing a usage example for Tecton connector (perhaps how to use it to 
build a training dataset in Beam). 

Week 
10 (Aug 
3–9) 

Performance Testing & Optimization: Conduct the planned benchmarking 
experiments for both Pinecone and Tecton connectors. Profile the code for any 
bottlenecks (for example, ensure that no unnecessary serialization happens per 
element). Optimize batch sizes or parallelism settings if needed. Collect metrics 
and compile a brief report of results. During this week, also seek community 
feedback by sharing the design and any code snippets on the Beam dev mailing 
list – incorporate any late feedback or suggestions. 

Week 
11 (Aug 
10–16) 

Final Documentation and Cleanup: Complete all documentation: ensure the 
Beam website pages for these connectors are ready (in the required markdown 
format in Beam’s repo). Double-check that all public classes and functions have 
clear docstrings. Clean up the code (remove debug logs, ensure naming 
consistency). Prepare the final pull request(s) encompassing the entire feature. 
This week, I will also devote time to help the Beam community test the connectors 
if anyone is available (maybe a mentor can try out the PR). 

Week 
12 (Aug 
17–23) 

Final Submission and Wrap-up: Address any final review comments from the 
Beam committers on the pull requests. Merge the connectors into the Apache 
Beam codebase (assuming approvals). Write a summary report of the project 
(and perhaps a blog post on my personal blog or Beam blog if appropriate) 
describing the journey and outcomes. In the last days, ensure that the connectors 
are listed in Beam’s I/O catalog and that JIRA issue GSOC-279 is marked resolved. 
Submit final work for GSoC evaluation. 

Note: The above timeline is somewhat optimistic but includes buffer in Week 6 (mid-term) and 
Week 12 for unforeseen delays. If any task takes longer, I will adjust subsequent weeks (for 
example, if Tecton integration proves complex, some benchmarking might be simplified or done 
after the official period as additional work). However, the goal is to have Pinecone integration 



finished by the mid-term and Tecton by the final evaluation. I will maintain flexibility and constant 
communication with mentors to re-prioritize if needed. 

Throughout the timeline, I will maintain weekly updates on my progress (e.g., on the mailing list 
or project tracker) to keep the community informed and to receive continuous feedback. 

Community Engagement Plan 
As an aspiring open-source contributor, I plan to actively engage with the Apache Beam 
community and my project mentors to ensure the success of this project and alignment with the 
community’s needs. My engagement plan includes: 

●​ Apache Beam Dev Mailing List: I will subscribe and introduce myself on the Beam 
developer mailing list at the start of the project. I will use the mailing list to discuss 
design decisions and ask for feedback on proposed approaches. For example, I intend 
to send a design overview of the Pinecone and Tecton connectors early in the project for 
community input. I will also post weekly progress summaries to the list (or the 
appropriate channel as advised by mentors), to keep everyone updated and invite 
suggestions.​
 

●​ Regular Mentor Meetings: I will have regular check-ins with my GSoC mentors (at least 
once a week, possibly more often during critical design phases). These can be via email 
or synchronous chats (Slack/Zoom) as preferred. In these meetings, I’ll present my 
progress, any blockers I encountered, and plans for the next steps. I’ll also actively seek 
mentors’ guidance on Beam’s best practices and any technical uncertainties (especially 
regarding Tecton integration).​
 

●​ Community Meetings: If Apache Beam holds any public community sync-ups or 
IRC/Slack channels, I will join them. For instance, some Apache projects have bi-weekly 
tech talks or meetups; I will attend any that are relevant. Engaging in real-time 
discussions can help in quickly resolving doubts and also show the community my active 
participation.​
 

●​ Code Reviews and Feedback: I will open my work as pull requests as early as 
reasonable (even as draft PRs). This invites Beam committers and contributors to review 
the code incrementally. I will promptly respond to code review comments, be open to 
critiques, and incorporate suggestions. This not only improves the quality of my work but 
also integrates me into the development workflow of the project.​
 

●​ Assist Fellow Contributors: Community engagement is a two-way street. I plan to 
monitor the user mailing list or StackOverflow for any Beam questions I can answer, 
especially related to IO connectors or ML use-cases. Given my background, I might help 
with questions on Elasticsearch IO or general Beam usage if they arise. Contributing in 



this way builds goodwill and sharpens my understanding of user needs.​
 

●​ Documentation Collaboration: I will seek help from the community in reviewing the 
documentation I write. Often, documentation benefits from feedback by users who try to 
follow it. I might request a volunteer from the community to try out a connector using my 
docs to see if it’s clear.​
 

●​ Adhering to Apache Etiquette: I understand Apache projects value respectful, 
transparent communication. I will ensure all my interactions are professional and 
appreciative of others’ time. For instance, if a community member raises a concern 
about design, I will discuss it objectively and consider alternatives rather than being 
defensive.​
 

●​ Time Management and Visibility: To build trust, I will keep a public project journal 
(perhaps a thread on the mailing list or a shared document) where I log daily/weekly 
what was done. This visibility ensures the community sees steady progress and can step 
in with advice if I’m stuck.​
 

●​ Mid-term and Final Reports: I will prepare a mid-term status report and a final 
presentation of results, possibly sharing in a community meeting or via the mailing list. 
This is not only for GSoC requirement but also a way to engage the community with 
what has been accomplished and what value it brings to Beam.​
 

By engaging through these channels, I aim to become a familiar and trusted member of the 
Apache Beam community. This will not only help during GSoC but also set the stage for 
long-term collaboration. My previous experiences working in teams (at companies and on 
projects) have taught me the importance of communication — I plan to bring that same 
collaborative spirit to the open-source community setting. 

Long-term Contribution and Future Plans 
My interest in Apache Beam and the broader data processing and ML infrastructure ecosystem 
extends beyond the GSoC 12-week period. I am committed to continuing as a contributor to 
Apache Beam and related open-source projects in the long term. Here’s how I envision my 
future involvement: 

●​ Maintaining the Connectors: After GSoC, I will take responsibility for the maintenance 
of the Pinecone and Tecton connectors. This means addressing any bugs or 
improvements that users or reviewers identify after integration. As these connectors get 
used in real-world scenarios, new feature requests may emerge (e.g., support for a new 
Pinecone feature or an update in Tecton’s API). I plan to actively follow Pinecone and 
Tecton’s product updates and keep the Beam connectors up-to-date accordingly.​
 



●​ Feature Enhancements: There are possibilities to extend the functionality of the 
connectors. For instance, for Pinecone, adding support for more advanced query options 
or supporting other operations like deleting vectors. For Tecton, perhaps integration with 
their offline store or adding caching layers. I intend to work on such enhancements 
post-GSoC, in collaboration with any interested community members or possibly with 
input from Pinecone/Tecton teams if they get involved.​
 

●​ Expanding Beam’s ML I/O Ecosystem: The proposal focuses on Pinecone and Tecton, 
but the idea of Beam ML connectors can be expanded. In the future, I’d be interested in 
adding connectors for other popular vector DBs or feature stores (for example, 
Weaviate, Milvus for vector DBs, or Feast, Hopsworks for feature stores). Having 
gained experience with this project, I could contribute to those integrations or mentor 
future contributors who take them on. Essentially, I’d like to help Apache Beam build a 
rich ecosystem of ML data connectors, making it a go-to platform for ML pipelines.​
 

●​ General Beam Contributions: Beyond I/O connectors, I am keen on contributing to 
other parts of Beam. My backend and distributed systems expertise could be useful in 
improving Beam’s runners or core. Perhaps I can help optimize the Python SDK, or 
contribute to Beam’s libraries for machine learning (Beam has some ML-related 
transforms, I recall). I am also interested in the Beam SQL and Beam’s portability 
framework. Post-GSoC, I’ll look for areas in Beam’s issue tracker that align with my skills 
and start picking up some of those.​
 

●​ Community Involvement: I plan to remain active on the Beam mailing lists and forums. 
If the connectors I built gather interest, I might do a short presentation or a blog post 
about them, which could be hosted on Beam’s blog if appropriate. I’m also open to 
mentoring new contributors; having gone through the process myself, I could guide 
newcomers in setting up Beam or writing their first transforms.​
 

●​ Leveraging Connectors in Real Projects: On a personal career note, I intend to use 
Apache Beam and the connectors in projects I work on (either at work or personal 
projects). By dogfooding my contributions, I will naturally find ways to improve them. For 
example, I might integrate Beam+Pinecone in an AI application I prototype. This 
real-world usage will keep me invested and knowledgeable about the codebase.​
 

●​ Continuous Learning: The tech world of data processing and ML moves fast. I will 
continue learning and possibly pursue advanced knowledge (maybe a Master’s later, or 
online courses) in distributed data systems. As I learn, I plan to bring that knowledge into 
Beam. For instance, if a new efficient pattern for vector search emerges, I could help 
integrate it.​
 

●​ Open Source Ethos: Ultimately, contributing to Beam is part of my larger commitment 
to open source. I foresee spending a portion of my time regularly contributing to open 
source projects I care about. Apache Beam is at the top of that list given the alignment 



with my interests. Over time, I hope to become a recognized contributor, and potentially 
attain committer status on Apache Beam if my contributions prove valuable and 
consistent.​
 

In summary, GSoC is a springboard for me into the Apache Beam community. I am enthusiastic 
about continuing the journey beyond the summer, ensuring that the project we start this 
summer grows and sustains. Apache Beam’s mission of unifying batch and streaming and 
enabling portable data processing is something I strongly resonate with, and I want to be part of 
its growth into the ML domain. This isn’t just a summer project for me – it’s the beginning of a 
long-term collaboration. 

Conclusion 
In this proposal, I outlined a comprehensive plan to implement Pinecone and Tecton connectors 
for Apache Beam, which will significantly enhance Beam’s capabilities in the machine learning 
domain. By enabling direct integration with a vector database and a feature store, Apache Beam 
can become a more powerful platform for end-to-end ML pipelines, supporting use cases from 
feature engineering to real-time inference with vector search. This contribution is important to 
the Apache Beam ecosystem because it fills a current gap – the lack of connectivity to modern 
ML data infrastructure – thereby expanding Beam’s applicability to state-of-the-art AI 
applications. 

I bring a strong background in backend engineering, distributed systems, and scalable 
architectures to this project. My experience with technologies like Elasticsearch and cloud 
services will be directly relevant in designing high-performance connectors that handle 
large-scale data. Throughout the 12-week timeline, I plan to deliver robust code, rigorous tests, 
and clear documentation, following Apache’s high standards for quality. Just as importantly, I will 
engage closely with the Apache Beam community to ensure the design aligns with user needs 
and to establish myself as a long-term contributor. 

By the end of the summer, Apache Beam will have new Pinecone and Tecton I/O connectors 
readily available. This means data scientists and engineers can, for example, use Beam to 
generate embeddings and store them in Pinecone in one pipeline, or pull features from Tecton 
for model training without leaving the Beam framework. The added convenience and capability 
will help Apache Beam users avoid writing glue code and instead focus on the core logic of their 
ML workflows. In essence, this project will empower Apache Beam to serve as a unified 
pipeline solution for advanced ML use-cases, strengthening its position in the ecosystem of 
data tools. 

Thank you for considering my proposal. I am excited about the opportunity to contribute to 
Apache Beam through GSoC 2025. I am confident that, with my skills and dedication, I can 
successfully implement the ML Vector DB/Feature Store integrations for Pinecone and Tecton. I 
look forward to the possibility of making this contribution and continuing to work with the Apache 



Beam community well beyond the summer. Together, we will help Apache Beam bridge the gap 
between data processing and machine learning, driving the project forward into new domains. 

 


	GSoC 2025 Proposal – Apache Beam: ML Vector DB/Feature Store Integrations (Pinecone & Tecton Connectors) 
	Personal Introduction & Information 
	Project Abstract 
	Problem Statement and Motivation 
	Proposed Deliverables 
	Technical Approach and Architecture 
	Testing and Benchmarking Strategy 
	Success Metrics 
	Timeline 
	Community Engagement Plan 
	Long-term Contribution and Future Plans 
	Conclusion 


