
Questions

Example: use argparse, when things get complicated or use argparse to control flow. How to
find out how things can be modularized.

Two questions:

1.​ I’m using argparse, how do I search for relevant info
a.​ What I would do: search “Python argparse command line tutorial” “Python

argparse integer”; “Python argparse alternatives” (Two alternatives: Click, rich…)
b.​ Python something.py --confidence 0.09 --flag true

My thoughts: if you research alternatives, you create less technical debt for the team down the
road.

2.​ How to modularize code in Python

a.​ Search “how to package python code”

Sklearn non-linear regression
Spark, can’t find a good way to do non-linear regression

SAS package has a nonlinear procedure, nonlinear regression, want to transition to Python with
PySpark. Can’t find this in PySpark. Can use SciPy.

1.​ Find how to do distributed computing for nonlinear regression.
2.​ Ideally, reuse the functions in SciPy without custom development. Only wrap it and

distribute it.

My approach:

1.​ Python distribute compute function tutorial (PySpark, dask, Ray
2.​ Google “how do I turn a function into PySpark function” - let’s say I found something and

I don’t really know how to use PySpark UDF
3.​ My strategy: build a prototype to test if this works

a.​ Reduce the data size. Create a small dataset (.csv) that resembles what I want to
compute. 100 rows vs 1 billion rows

b.​ Instead of doing non linear regression. I want to if I can wrap SciPy function into
PySpark function. Instead of using nonlinear, I’ll use linear regression.

c.​ Try to write script that performs linear regression on this 100 row dataset. Check
if output makes sense

d.​ Use the same structure, swap out the linear regression with nonlinear regression,
run again on the 100 rows.

e.​ Figure out how to run this script for 1 billion rows.

General question: how to efficiently code.

My thoughts:

1.​ Learn to use an IDE (VSCode, PyCharm Community) - highlights syntax errors,
autocompletion if code is modular. Most useful: project wide search. VSCode can do
remote development.

2.​ Google “how to use vscode with Python” “how to use PyCharm” “how to set up vscode
for Python projects”

3.​ Learn to write simple python tests ->
a.​ Instead of just writing code, you need a “test script” that you can run frequently

and tell if you broke the code
b.​ In Python, this is mostly done with the package “pytest”
c.​ Brian Okken’s book is great

Question: Python feels overwhelming because it’s open source. How do we choose the right
framework given so many alternatives?

1.​ Consider the tradeoff in you work - is this thing urgent? Or I can take it slower and aim
for better quality?

2.​ Don’t over analyze, just start. Spend 5% of time researching alternatives. “Can I find
something better with 5 mins of Googling”

What are some things that you want to do?

Write down the ideas and maybe I can help you get started

