제주도청 건설주택국 - 건설과 AI 자동화 계획서

1. 부서 현황 분석

주요 업무

- 토목 건설사업 계획 수립 및 추진
- 도로·교량·터널 건설 및 관리
- 상하수도 시설 건설
- 하천 정비 및 치수 사업
- 건설공사 발주 및 관리
- 건설업체 관리 및 지도감독
- 건설안전 관리 및 점검
- 건설기술 연구 및 개발

직원별 현재 업무 및 자동화 대상

과장 (1명)

- 현재 업무: 부서 총괄, 건설정책 수립, 대외 협력
- 자동화 대상:
 - 건설사업 현황 종합 대시보드 실시간 모니터링
 - 건설정책 효과 분석 및 예측
 - 건설예산 집행 효율성 분석 자동화
 - 정책 의사결정 지원을 위한 건설 빅데이터 분석

건설기획팀장 (1명) + 건설기획팀원 (4명)

- 현재 업무: 건설사업 기획, 예산 계획, 타당성 검토
- 자동화 대상:
 - 건설사업 타당성 분석 및 우선순위 자동 설정
 - 건설비용 예측 및 예산 최적화
 - 건설공법 선택 및 최적화 방안 도출
 - 건설기간 단축 및 효율성 향상 방안

도로건설팀장 (1명) + 도로건설팀원 (5명)

- 현재 업무: 도로 신설·확장, 교량 건설, 터널 공사
- 자동화 대상:
 - 도로 설계 최적화 및 자동 설계 지원
 - o 교량·터널 구조 안전성 분석 및 설계

- 도로공사 진도 관리 및 품질 관리
- 교통영향 최소화 공사 계획 수립

상하수도건설팀장 (1명) + 상하수도건설팀원 (3명)

- 현재 업무: 상하수도 관로 매설, 처리시설 건설
- 자동화 대상:
 - 상하수도 관로 최적 설계 및 배치
 - 지하매설물 탐지 및 간섭 회피 계획
 - 상하수도 시설 용량 산정 및 최적화
 - 시공 중 품질 및 안전 관리

하천정비팀장 (1명) + 하천정비팀원 (3명)

- 현재 업무: 하천 개수, 제방 축조, 배수펌프장 건설
- 자동화 대상:
 - 하천 홍수 대응 최적 설계 방안
 - 생태하천 복원 및 친환경 공법 적용
 - 하천 시설물 내구성 및 유지관리 계획
 - 배수시설 용량 및 배치 최적화

건설관리팀장 (1명) + 건설관리팀원 (4명)

- 현재 업무: 공사 감독, 품질 관리, 안전 점검
- 자동화 대상:
 - 건설현장 안전 관리 및 사고 예방
 - 건설품질 자동 검사 및 관리
 - 공정 관리 및 진도율 실시간 모니터링
 - 건설업체 성과 평가 및 관리

건설업무담당 (2명)

- 현재 업무: 건설업 인허가, 업체 지도감독, 민원 처리
- 자동화 대상:
 - 건설업 인허가 자동 심사 및 처리
 - 건설업체 신용도 및 시공능력 평가
 - 건설현장 위반 사항 자동 감지
 - 건설 관련 민원 자동 분류 및 처리

2. AI 자동화 대상 업무별 계획

A. 스마트 건설사업 관리 시스템

현재 문제점

• 건설기획팀 4명이 매월 20개 건설사업 관리에 과부하

- 건설사업 타당성 분석 및 우선순위 설정의 객관성 부족
- 건설비용 예측 부정확으로 예산 초과 빈발
- 건설공기 지연 및 품질 관리 한계

AI 자동화 방안

DeepSeek R1 활용:

- 건설사업 타당성 분석 및 투자 우선순위 자동 설정
- 건설비용 예측 및 예산 최적화 모델
- 건설공법 선택 및 공기 단축 방안 도출
- 건설사업 위험도 분석 및 관리 방안

Qwen3 Fine-tuning:

- 제주도 건설환경 특성(화산암 지질, 강풍, 염해) 학습
- 도서 지역 건설 제약 조건 및 해결 방안
- 제주 건설공법 최적화 사례 및 성공 요인
- 관광지 건설사업 특별 고려사항 및 관리

- 1. 건설사업 통합 관리 시스템 (5개월)
 - 1개월차: 사업 데이터 통합 및 분석
 - 진행 중인 건설사업 현황 데이터 통합
 - 과거 건설사업 이력 및 성과 데이터 분석
 - 사업별 예산, 공기, 품질 지표 체계화
 - 건설사업 관련 법규 및 기준 데이터베이스
 - 2개월차: 타당성 분석 자동화
 - 경제성 분석(B/C, NPV, IRR) 자동 산출
 - 기술적 타당성 및 시공 가능성 평가
 - 환경영향 및 사회적 영향 분석
 - 정책적 우선순위 및 긴급성 평가
 - 3개월차: 비용 예측 모델 개발
 - 공종별 단가 및 물가 변동 예측
 - 설계 변경 및 추가 공사 가능성 분석
 - 지역별 건설여건 반영 비용 보정
 - 위험 요인 고려 예비비 산정
 - 4개월차: 공기 및 품질 관리
 - 최적 공사 일정 및 공법 선택
 - 기상 조건 및 계절적 요인 반영
 - 품질 관리 계획 자동 수립

- 시공 단계별 체크포인트 설정
- 5개월차: 통합 관리 플랫폼
 - 건설사업 현황 실시간 대시보드
 - 사업별 진도율 및 성과 모니터링
 - 이슈 및 위험 요인 조기 감지
 - 의사결정 지원 분석 리포트 자동 생성
- 2. 건설사업 최적화 시스템 (3개월)
 - 1개월차: 설계 최적화 지원
 - BIM 기반 3D 설계 자동 검토
 - 구조 안전성 및 내구성 분석
 - 설계 표준화 및 모듈화 적용
 - 생애주기 비용(LCC) 최적화
 - 2개월차: 시공 최적화 지원
 - 시공 순서 및 공법 최적화
 - 자재 조달 및 운송 계획 최적화
 - 인력 배치 및 장비 운용 계획
 - 현장 여건 반영 시공 계획
 - 3개월차: 성과 관리 시스템
 - 건설사업 성과 지표 자동 산출
 - 벤치마킹 및 모범 사례 분석
 - 교훈 사항 및 개선 방안 도출
 - 건설기술 발전 방안 제시

건설기획팀장:

- 기존: 사업 기획 및 타당성 검토 (주 42시간)
- 변화: AI 분석 결과 검토 및 정책 수립 (주 32시간)

건설기획팀원 4명:

- 기존: 사업 분석 및 계획 수립 (1명당 주 40시간)
- 변화: Al 지원 고도화 기획 및 관리 (1명당 주 30시간)

기대효과

- 건설사업 기획 효율성 60% 향상
- 건설비용 예측 정확도 40% 개선
- 공기 단축 20% 달성
- 건설사업 성공률 35% 증가

B. 지능형 도로·교량 건설 관리 시스템

현재 문제점

- 도로건설팀 5명이 10개 도로공사 현장 관리 어려움
- 교량·터널 구조물 설계 및 안전성 검토 복잡성
- 도로공사 중 교통 혼잡 및 민원 발생
- 시공품질 관리 및 검사의 일관성 부족

AI 자동화 방안

DeepSeek R1 활용:

- 도로·교량 최적 설계 및 구조 해석
- 교통영향 최소화 시공 계획 수립
- 도로공사 품질 관리 및 자동 검사
- 구조물 안전성 실시간 모니터링

Qwen3 Fine-tuning:

- 제주도 도로 특성(해안도로, 산악도로) 반영 설계
- 강풍 및 염해 환경 대응 구조물 설계
- 관광도로 특성 고려 경관 및 안전 설계
- 제주 지질 조건 맞춤형 시공법 적용

- 1. 도로 설계 최적화 시스템 (4개월)
 - 1개월차: 지형 및 지질 분석
 - 3D 지형 모델링 및 노선 최적화
 - 지질 조사 데이터 기반 설계 반영
 - 환경 제약 조건 및 경관 고려
 - 용지비 및 보상비 최소화 노선
 - 2개월차: 구조물 설계 자동화
 - 교량 형식 선정 및 최적 설계
 - 터널 굴착 공법 및 지보 설계
 - 구조 해석 및 안전성 검토
 - 내구성 및 유지관리 고려 설계
 - 3개월차: 교통 및 환경 영향 분석
 - 교통량 예측 및 용량 분석
 - 교통 혼잡 최소화 시공 계획
 - 환경영향 및 저감 방안
 - 소음·진동 영향 분석 및 대책

- 4개월차: 설계 검토 및 최적화
 - 설계 도서 자동 검토 및 검증
 - 설계 변경 영향도 분석
 - 공사비 및 공기 최적화
 - 품질 및 안전 기준 준수 확인
- 2. 시공 관리 자동화 시스템 (3개월)
 - 1개월차: 현장 모니터링 시스템
 - loT 센서 기반 시공 상황 실시간 모니터링
 - 드론 및 영상 분석을 통한 진도 관리
 - 품질 관리 자동 측정 및 기록
 - 안전 관리 및 사고 예방 시스템
 - 2개월차: 품질 관리 자동화
 - 콘크리트 강도 및 품질 자동 관리
 - 아스팔트 포장 품질 실시간 검사
 - 구조물 정밀도 및 마감 품질 측정
 - 품질 기준 미달 시 자동 알림
 - 3개월차: 통합 현장 관리
 - 현장별 종합 상황 대시보드
 - 공정별 작업 지시 및 관리
 - 자재 및 장비 운용 최적화
 - 현장 안전 및 환경 관리

도로건설팀장:

- 기존: 도로공사 현장 관리 및 감독 (주 44시간)
- 변화: AI 시스템 관리 및 기술 검토 (주 34시간)

도로건설팀원 5명:

- 기존: 현장 감독 및 품질 관리 (1명당 주 42시간)
- 변화: AI 지원 정밀 관리 및 기술 지원 (1명당 주 32시간)

기대효과

- 설계 품질 및 효율성 50% 향상
- 시공 품질 관리 정확도 70% 개선
- 공사 중 교통 불편 30% 감소
- 구조물 안전성 및 내구성 확보

C. 스마트 상하수도 건설 시스템

현재 문제점

- 상하수도건설팀 3명이 관로 매설 및 시설 건설 관리 어려움
- 지하매설물 위치 파악 및 간섭 회피 계획 수립 복잡
- 상하수도 시설 용량 산정 및 배치 최적화 한계
- 시공 중 품질 및 안전사고 위험 관리 부족

AI 자동화 방안

DeepSeek R1 활용:

- 상하수도 관로 최적 설계 및 배치 계획
- 지하매설물 3D 맵핑 및 간섭 분석
- 시설 용량 산정 및 처리 효율성 최적화
- 시공 품질 및 안전 관리 자동화

Qwen3 Fine-tuning:

- 제주 지하수 특성 반영 상하수도 설계
- 화산암 지질 조건 시공법 최적화
- 관광 성수기 급수량 변화 대응 설계
- 제주 기후 조건 고려 시설 내구성 확보

- 1. 관로 설계 최적화 시스템 (3개월)
 - 1개월차: 지하공간 3D 모델링
 - 기존 지하매설물 현황 3D 맵핑
 - 상하수도 관로 최적 경로 설계
 - 매설 깊이 및 구배 자동 계산
 - 관경 선정 및 수리 계산
 - 2개월차: 간섭 분석 및 회피
 - 지하매설물 간섭 자동 감지
 - 최적 회피 경로 및 방법 제시
 - 시공 순서 및 임시 조치 계획
 - 복구 및 원상복구 계획 수립
 - 3개월차: 통합 설계 시스템
 - 상하수도 통합 설계 플랫폼
 - 설계 도서 자동 생성 및 검토
 - 공사비 및 공기 자동 산출
 - 인허가 및 협의 사항 관리
- 2. 시공 관리 자동화 시스템 (2개월)

- 1개월차: 품질 관리 시스템
 - 관로 매설 정확도 실시간 측정
 - 접합부 시공 품질 자동 검사
 - 수압 시험 및 누수 검사 자동화
 - 되메우기 및 복구 품질 관리
- 2개월차: 안전 관리 시스템
 - 굴착면 안전성 실시간 모니터링
 - 가스 누출 및 산소 농도 감지
 - 작업자 안전 장비 착용 확인
 - 응급 상황 자동 대응 시스템

상하수도건설팀장:

- 기존: 상하수도 공사 관리 및 감독 (주 40시간)
- 변화: AI 분석 기반 기술 관리 (주 30시간)

상하수도건설팀원 3명:

- 기존: 현장 감독 및 품질 검사 (1명당 주 38시간)
- 변화: AI 지원 정밀 관리 및 기술 지원 (1명당 주 28시간)

기대효과

- 설계 정확도 및 효율성 45% 향상
- 지하매설물 손상 사고 80% 감소
- 시공 품질 및 안전성 60% 개선
- 공사기간 25% 단축

D. 지능형 하천정비 시스템

현재 문제점

- 하천정비팀 3명이 하천 개수 및 치수시설 건설 관리 어려움
- 홍수 대응 하천 설계 및 용량 산정 복잡성
- 생태하천 복원과 치수 기능 조화 방안 수립 한계
- 하천 시설물 장기 유지관리 계획 수립 부족

AI 자동화 방안

DeepSeek R1 활용:

- 하천 홍수 대응 최적 설계 및 용량 산정
- 생태하천 복원 및 친환경 공법 선택

- 하천 시설물 내구성 분석 및 유지관리 계획
- 배수시설 최적 배치 및 운영 방안

Qwen3 Fine-tuning:

- 제주 하천 특성(건천, 집중호우) 반영 설계
- 화산암 하상 특성 고려 하천 공법
- 관광지 인근 하천 경관 및 친수 공간 설계
- 제주 기후변화 대응 치수 능력 확보

- 1. 하천 설계 최적화 시스템 (3개월)
 - 1개월차: 수문 분석 및 설계
 - 유역별 강우량 및 유출량 분석
 - 홍수량 산정 및 하천 용량 설계
 - 하천 종횡단 최적 설계
 - 교량 및 구조물 계획 수위 산정
 - 2개월차: 생태 복원 설계
 - 생태하천 복원 계획 수립
 - 어도 및 생물 서식지 설계
 - 친환경 호안 공법 선택
 - 하천 생태계 연결성 확보
 - 3개월차: 통합 하천 설계
 - 치수와 환경 기능 조화 설계
 - 하천 시설물 최적 배치
 - 유지관리 접근성 고려 설계
 - 경관 및 친수 공간 계획
- 2. 시공 및 관리 시스템 (2개월)
 - 1개월차: 시공 관리 자동화
 - 하천 공사 진도 실시간 모니터링
 - 콘크리트 품질 및 강도 관리
 - 호안 및 바닥 보호공 시공 품질
 - 환경 영향 최소화 시공 관리
 - 2개월차: 유지관리 계획
 - 하천 시설물 장기 성능 예측
 - 유지보수 시기 및 방법 계획
 - 하천 준설 및 정비 계획
 - 시설물 모니터링 체계 구축

하천정비팀장:

- 기존: 하천정비 사업 관리 (주 38시간)
- 변화: AI 분석 기반 하천 정책 수립 (주 28시간)

하천정비팀원 3명:

- 기존: 현장 관리 및 설계 검토 (1명당 주 36시간)
- 변화: AI 지원 전문 기술 관리 (1명당 주 26시간)

기대효과

- 하천 설계 품질 50% 향상
- 홍수 방어 능력 40% 증대
- 생태 복원 효과 60% 개선
- 유지관리 비용 30% 절감

E. 스마트 건설 안전관리 시스템

현재 문제점

- 건설관리팀 4명이 20개 건설현장 안전 관리 한계
- 건설현장 사고 예방 및 위험 요소 사전 감지 어려움
- 건설품질 검사의 일관성 및 객관성 부족
- 건설업체 성과 평가 및 관리 체계 미흡

AI 자동화 방안

DeepSeek R1 활용:

- 건설현장 안전 위험 요소 자동 감지 및 예방
- 건설품질 자동 검사 및 관리 시스템
- 공정 관리 및 진도율 실시간 모니터링
- 건설업체 성과 평가 및 등급 관리

Qwen3 Fine-tuning:

- 제주 건설현장 특성 및 위험 요소 학습
- 기상 조건(강풍, 태풍) 대응 안전 관리
- 건설업체 평가 기준 및 우수 사례
- 건설안전 사고 예방 및 대응 방안

- 1. 현장 안전관리 시스템 (3개월)
 - 1개월차: 위험 요소 감지 시스템
 - CCTV 및 AI 영상분석 기반 위험 행동 감지
 - 작업자 안전장비 착용 상태 자동 확인
 - 위험 구역 출입 및 작업 모니터링
 - 장비 및 크레인 안전 운행 감시
 - 2개월차: 예방 및 대응 시스템
 - 안전사고 위험도 자동 평가 및 등급 분류
 - 기상 조건 연동 작업 중단 판단
 - 응급상황 자동 감지 및 신속 대응
 - 안전교육 및 훈련 효과 분석
 - 3개월차: 통합 안전관리
 - 현장별 안전 현황 실시간 대시보드
 - 안전 성과 지표 자동 산출
 - 안전사고 원인 분석 및 대책 수립
 - 안전관리 우수 현장 벤치마킹
- 2. 품질관리 자동화 시스템 (2개월)
 - 1개월차: 자동 품질 검사
 - 콘크리트 압축강도 및 슬럼프 자동 측정
 - 철근 배근 및 피복두께 검사
 - 구조물 치수 및 마감 품질 측정
 - 품질 기준 준수 여부 자동 판정
 - 2개월차: 품질 관리 시스템
 - 품질 관리 계획 자동 수립
 - 품질 검사 일정 및 항목 관리
 - 품질 불량 발생 시 원인 분석
 - 품질 향상 방안 자동 제시

건설관리팀장:

- 기존: 현장 관리 및 안전 점검 (주 **45**시간)
- 변화: AI 시스템 관리 및 정책 수립 (주 35시간)

건설관리팀원 4명:

- 기존: 현장 감독 및 품질 검사 (1명당 주 43시간)
- 변화: AI 지원 전문 관리 및 기술 지도 (1명당 주 33시간)

기대효과

- 건설사고 발생률 70% 감소
- 품질 관리 정확도 80% 향상
- 현장 관리 효율성 60% 증대
- 건설업체 성과 관리 체계화

3. 통합 시스템 아키텍처

기술 스택

- AI 플랫폼: DeepSeek R1 + Fine-tuned Qwen3
- BIM/CIM: Autodesk BIM 360 + Bentley MicroStation
- IoT 플랫폼: 건설현장 센서 네트워크 + 안전관리 장비
- 드론/영상: 드론 측량 + AI 영상분석 + 실시간 모니터링
- 데이터 플랫폼: Apache Kafka + Spark Streaming
- 클라우드: AWS/Azure 하이브리드 클라우드
- GIS: PostGIS + QGIS Server + 국가공간정보
- 데이터베이스: PostgreSQL + InfluxDB + MongoDB
- API: GraphQL + REST API + WebSocket
- 프론트엔드: React + Next.js + 3D 시각화
- 모바일: Flutter + PWA + 현장 관리 앱

데이터 통합 및 보안

- 건설 빅데이터 실시간 처리 및 분석
- BIM 데이터와 IoT 센서 데이터 통합
- 건설정보 보안 및 지식재산권 보호
- 국가건설기준 및 표준 준수

4. 도입 일정

전체 일정: 12개월

1-5개월: 스마트 건설사업 관리 시스템 구축 6-9개월: 지능형 도로·교량 건설 시스템 개발 10-12개월: 상하수도, 하천, 안전관리 시스템 구축

5. 성과 지표 (KPI)

정량적 지표

- 건설사업 기획 효율성: 60% 향상
- 건설비용 예측 정확도: 40% 개선
- 공기 단축: 20% 달성

● 설계 품질 및 효율성: 50% 향상

• 건설사고 발생률: 70% 감소

● 품질 관리 정확도: 80% 향상

정성적 지표

- 과학적 건설사업 관리 체계 확립
- 건설 안전 및 품질 관리 고도화
- 지속가능한 건설 기술 발전
- 건설산업 생산성 및 경쟁력 향상

6. 예산 계획

총 사업비: 200억원

건설사업 관리 시스템: 80억원 도로·교량 건설 시스템: 65억원 상하수도 건설 시스템:

30억원 하천정비 시스템: 15억원 안전관리 시스템: 10억원

연차별 예산 배분

• **1**년차: 135억원 (인프라 구축 집중)

• 2년차: 65억원 (고도화 및 운영)

7. 차기 계획

건설과 AI 자동화 완료 후, 건축경관과로 확장 예정

- 스마트 건축 설계 및 심의 시스템
- 지능형 경관 관리 시스템

• 스마트 건축물 관리 시스템

작성일: 2025년 6월 25일

작성 부서: 제주도청 건설주택국 건설과

승인: 건설과장