

Convert submodule to builtin
March 2020

Contact Information

Name Shourya Shukla

Major Computer Science and Engineering

E-mail shouryashukla.oo@gmail.com

IRC rasengan_chidori on #git & #git-devel

Mobile no +91 9871030887

GitHub periperidip

Linkedin shuklashourya

StackOverflow rasengan__

Website https://sites.google.com/view/periperidip

Address 119, Shree Awas Apartments, Sector-18B,
Dwarka, New Delhi

Postal code 110078

Time Zone IST (UTC +0530)

https://github.com/periperidip
https://www.linkedin.com/in/shuklashourya
https://stackoverflow.com/users/10751129/rasengan
https://sites.google.com/view/periperidip

Background

I am Shourya Shukla, a sophomore in Computer Science and Engineering at the Indian Institute of
Technology Roorkee. I was introduced to programming at a young age and I have been trying to
learn new concepts everyday since. My interests include modern mobile networks, Internet of
Things, system software development and cryptography. I had been an active member of InfoSec
IITR, a group for information security enthusiasts. I have been working on a research project
which involves providing cellular network access to users in a disaster-struck area via drones. I
love low-level coding and FLOSS as well. I have been an active part of the Git community since
January of this year, contributing to Git.

Work Environment

I am fluent in C/C++, Java and Shell script, and have an understanding of Python as well. I use Git
as my VCS and Visual Studio Code with integrated GDB as my primary code editor and Ubuntu
19.10 as my primary Operating System unless the work specifically demands Windows.

Contributions to Git

Contributing to Git helped me understand a lot about how modern softwares work behind the

walls as well as how real world development takes place. I will keep contributing to Git, be it

solving doubts, reporting/solving bugs, writing code, etc. and make my work count. As of now, my

contributions at Git are:

status: merged

git/git:

[Microproject]: Modernise tests and use helper functions in test
script.

GitHub:https://github.com/git/git/commit/c513a958b69090c02ad422b0cd
4622009bb4b9f5

List:https://lore.kernel.org/git/20200116203622.4694-1-shouryashukl
a.oo@gmail.com/

1

https://www.iitr.ac.in/
https://www.iitr.ac.in/
https://www.facebook.com/InfoSecIITR
https://www.facebook.com/InfoSecIITR
https://github.com/periperidip/UAV-based-wireless-networks-2
https://github.com/git/git/commit/c513a958b69090c02ad422b0cd4622009bb4b9f5
https://github.com/git/git/commit/c513a958b69090c02ad422b0cd4622009bb4b9f5
https://lore.kernel.org/git/20200116203622.4694-1-shouryashukla.oo@gmail.com/
https://lore.kernel.org/git/20200116203622.4694-1-shouryashukla.oo@gmail.com/

List

[Solved doubt]: fatal: cannot rebase with locally recorded submodule
modifications

List:https://lore.kernel.org/git/20200207220403.28961-1-shouryashuk
la.oo@gmail.com/

List

[Aided a new contributor]: Need help to start contributing

List:https://lore.kernel.org/git/20200205032925.5272-1-shouryashukl
a.oo@gmail.com/

List

[Aided a potential GSoC student]: [GSoC] Microproject for git

List:https://lore.kernel.org/git/20200318192719.1127-1-shouryashukl
a.oo@gmail.com/

List

[Reviewed a Microproject]: [GSoC][PATCH 1/2] t4131: modernize style

List:https://lore.kernel.org/git/20200319163817.4239-1-shouryashukl
a.oo@gmail.com/

2

https://lore.kernel.org/git/20200207220403.28961-1-shouryashukla.oo@gmail.com/
https://lore.kernel.org/git/20200207220403.28961-1-shouryashukla.oo@gmail.com/
https://lore.kernel.org/git/20200205032925.5272-1-shouryashukla.oo@gmail.com/
https://lore.kernel.org/git/20200205032925.5272-1-shouryashukla.oo@gmail.com/
https://lore.kernel.org/git/20200318192719.1127-1-shouryashukla.oo@gmail.com/
https://lore.kernel.org/git/20200318192719.1127-1-shouryashukla.oo@gmail.com/
https://lore.kernel.org/git/20200319163817.4239-1-shouryashukla.oo@gmail.com/
https://lore.kernel.org/git/20200319163817.4239-1-shouryashukla.oo@gmail.com/

The Project: Convert submodule to builtin

Outline

Some Git commands were initially implemented directly in shell script with some instances of Perl

as well. As times progressed, various platforms to run Git emerged & projects became

large(spanning millions of lines of code), enter, problems in production level code:

●​ There were issues with portability of code. The submodule shell script uses commands

such as echo, grep, cd, test and printf to name a few. When switching to non-POSIX

compliant systems, one will have to re-implement these commands specifically for the

system. There are also POSIX-to-Windows path conversion issues. To fix these issues, it

was decided to convert these scripts into portable C code(the original intention C was

developed with, to have portable code and software).

●​ No access to low-level git API. Shell commands don’t have an access to the low-level git

API, i.e., the plumbing commands of git which include git cat-file, git
hash-object, etc. These are the commands responsible for supporting the main git

commands such as add, commit, etc. It is an obvious fact that the low level API will be

needed to carry out any operation, but due to lack of access to it, the commands have to

spawn a separate shell for the same.

●​ There is large overhead involved in calling the command. As these commands

implemented in shell script are not buitlins, they tend to call multiple fork() and exec()

syscalls for creating more child processes hence creating another shell. This is the

aforementioned overhead we are talking about and it rather takes a huge toll on big

repositories in terms of the time elapsed to run a command as well as the extra memory

consumed.

●​ If commands have other nested commands (such as git submodule using git
rev-parse, git ls-files and git add to name a few), the overhead mentioned in

the point above tends to rise exponentially which again would contribute to the slowing

down of the whole git suite. This again reinforces the above two reasons.

Various commands have been converted as of now due to the reasons mentioned above, such

as add, blame, commit, bisect(work in progress), etc. In my project, I intend to convert submodule

into C fully, hence making it a ‘builtin’.

3

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

Submodules and git submodule

Submodule, as defined in the gitglossary is, “A repository that holds the history of a separate

project inside another repository (the latter of which is called superproject).”, which translates to,

an independent git repository inside another git repository.

Submodules are used when we need to use some work from an external repository(say we need

a particular library(eg: boost) to implement in our code). Hence, we clone this repository as a

submodule using git submodule add <repo-url>. The advantages are three fold:

●​ First, we can utilise the repository we just cloned, i.e., the submodule in whatever way we

wish. It would feel as if this submodule was just a part of the code. Hence, our use-case

isn’t damaged in any way whatsoever.

●​ Second, the history of this submodule is independent of the history of our working tree,

i.e., the superproject. This means that any commit we make in our submodule won’t get

rebased(i.e., put on top) onto our superproject’s working tree but would show up just as

any other change in a directory of our working tree. Hence, our working tree’s history isn't

tampered.

●​ Finally, as a submodule is just a repository, we can conduct normal git actions such as

pull, push, fetch, etc. on them. This helps in keeping our submodule up-to-date with the

changes that are happening in it.

Git, for instance, uses the sha1collisiondetection repository as a submodule.

git submodule is a command used to manipulate and deal with submodules. Our aim is to

convert this command from its shell form into its C form.

Previous Work

There has been ongoing work in the conversion of various Git commands such as add, commit,

blame, etc. from their shell form into their C form. git submodule is one of the commands left

to fully convert into its C form. Stefan Beller converted a large part of this command up until 2019.

Prathamesh Chavan also aided in the conversion of the command during his GSoC project in the

year 2017. In its current state, four git submodule subcommands are due for conversion,

namely: add, set-branch, set-url and summary. Also, the Command Line parsing Interface

needs improvements, such as better error messages and support for more subcommands.

Prathamesh implemented and improved the subcommands status, sync, deinit and some

more. The relevancy of this to my project is that some helper functions(located in submodule.c)

such as print_submodule_summary(),prepare_submodule_summary(), etc. have been

4

https://git-scm.com/docs/gitglossary#Documentation/gitglossary.txt-aiddefsubmoduleasubmodule
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://github.com/cr-marcstevens/sha1collisiondetection/tree/855827c583bc30645ba427885caa40c5b81764d2
mailto:stefanbeller@gmail.com
mailto:pc44800@gmail.com
https://lore.kernel.org/git/20170724203454.13947-1-pc44800@gmail.com/#t
https://lore.kernel.org/git/20170713200538.25806-4-pc44800@gmail.com/
https://lore.kernel.org/git/20180114211529.6391-2-pc44800@gmail.com/
https://lore.kernel.org/git/20180114211529.6391-3-pc44800@gmail.com/

implemented beforehand. In the case of subcommand summary, the work left is to use these

functions, integrate them with the basic scaffolding(mentioned in the table below) and implement

the module_summary() frontend function. He also ported various helper functions such as

set_name_rev(). He kept offering improvements to his conversions till around January of

2018.

Stefan Beller finished the implementation of the subcommand init as well as laid its foundation.

He implemented foreach and improved deinit & update as well. He also ported various

helper functions such as resolve_relative_url().

Current Status of the subcommand and future vision

The general format of the BASH version for any subcommand is:

●​ A cmd_subcommand-name() function which houses the main command functionality.

eg: cmd_add() for the add subcommand; cmd_set_url() for the set-url subcommand.

●​ Various other helper functions which aid in the functioning of the whole command and

are used throughout the whole shell file by various subcommands and functions.

eg: get_submodule_config()[helps in gathering the submodule configuration],

sanitize_submodule_env()[helps in sanitizing the working tree by saving some git

config parameters and clearing the local git environment].

The general format of the C version for any subcommand is:

●​ A module_subcommand-name() function which acts as the frontend of the command

by accepting various parameters(such as quiet) and separating out the nuts and bolts

of the command given then finally passing control on to other functions mentioned below.

eg: module_status() for the status subcommand; module_init() for the init

subcommand.

●​ A subcommand-name_submodule() function which is generally the main working

function. Its job ranges from handling the parameters passed on by the aforementioned

function to performing the main task of the subcommand. eg: status_submodule() for

the status subcommand; init_submodule() for the init subcommand.

●​ A subcommand-name_cb structure which contains variables prefix and flags to

contain the flags(parameters) and prefixes passed into the command line. eg: struct
status_cb{} for the status subcommand.

●​ An optional callback function of the format subcommand-name_submodule_cb()

which helps in performing callbacks, i.e., calls to other functions.

eg: status_submodule_cb() for the status subcommand.

●​ A SUBCOMMAND-NAME_CB_INIT macro. eg: INIT_CB_INIT for the init subcommand.

5

https://lore.kernel.org/git/20170619215025.10086-3-pc44800@gmail.com/
https://lore.kernel.org/git/1453418323-29587-1-git-send-email-sbeller@google.com/
https://lore.kernel.org/git/1453255396-31942-3-git-send-email-sbeller@google.com/
https://lore.kernel.org/git/20180509002952.172347-5-sbeller@google.com/
https://lore.kernel.org/git/20180327232824.112539-1-sbeller@google.com/
https://lore.kernel.org/git/1444960333-16003-6-git-send-email-sbeller@google.com/
https://lore.kernel.org/git/1460767813-25916-2-git-send-email-sbeller@google.com/

●​ Various other helper functions which might be command specific(eg: print_status())

or might be useful for other subcommands and functions as well

(eg: get_default_remote()).

There is also a cmd_struct called commands, which houses all the converted(i.e., usable)

commands along with some helper subcommands too. The structure will be updated when we

port a command fully.

We will aim to port our remaining subcommands: add, summary, set-branch and set-url in the

above mentioned format. The first job will be to create the frontend function, structure and

macro(which constitutes the basic scaffolding) followed by creating the main working function

with various helper functions on the way.

The current status of the conversion as well as the direction I will take for the conversion of the

subcommands are as follows:

Subcommand Current status

add pending conversion, full code needs to be written for the same. Need to
implement callback macros and structures, i.e. struct add_cb,
ADD_CB_INIT, as well as frontend function module_add(). Other helper
functions may be needed in the process as well. Compare with shell script
and try to “translate” it into C. I guesstimate around 400-500 lines of code
for this(including helper functions).

set-branch pending conversion, full code needs to be written for the same. Need to
implement macros and structures, i.e. struct setbranch,
SETBRANCH_CB_INIT, as well as frontend function module_setbranch().
Other helper functions(such as remote_submodule_branch() &
get_default_remote() which are already implemented may prove
helpful later) may be needed in the process as well. Compare with shell
script and try to “translate” it into C. This subcommand may take about 200
lines of C code to implement(including helper functions).

set-url pending conversion, full code needs to be written for the same. Need to
implement macros and structures, i.e. struct seturl, SETURL_CB_INIT, as
well as frontend function module_seturl(). Other helper functions(such as
relative_url() & resolve_relative_url() which are already
implemented may prove helpful later) may be needed in the process as
well. Compare with shell script and try to “translate” it into C. It will have a
similar implementation to set-branch because they are “setter” functions.
This subcommand may take about 200 lines of C code to
implement(including helper functions).

summary pending conversion, work in progress; callback structures, functions and
macros have been created, also, basic scaffolding of the command is

6

done, i.e., functions module_summary(), summary_submodule(),
summary_submodule_cb(). As this is a prototype, some functions may be
scrapped or added later. Other functions to complement the subcommand
have already been created; learn from Prathamesh's mistakes and
implement a better code. After discussions with Junio C Hamano, I intend
to add a “--recursive” option as well for summary so as to obtain
summaries of nested submodules as well. I estimate about 400 lines of
code for this subcommand(excluding the “--recursive” option, yet
including the helper functions)

status conversion complete, currently in a functional state.

init conversion complete, currently in a functional state.

deinit conversion complete, currently in a functional state.

update conversion complete, currently in a functional state.

foreach conversion complete, currently in a functional state.

sync conversion complete, currently in a functional state.

absorbgitdirs conversion complete, currently in a functional state.

The commands which are in a converted state still use the shell script for accepting user input

from the command line, followed by parsing the parameters and then forward this to the C file. To

make submodule a complete builtin, this might need to be amended as well.

The subcommands set-url and set-branch might not require the complex wiring add and summary

subcommands will need because of the fact that they are “setter” subcommands.

Though, there is about a 3 year gap between Prathamesh & Stefan’s work and mine, the model

for porting seems to be consistent even if coding style may vary and might even give out

improvements over previous implementations.

Contribution process and interaction with the mentors

I will keep committing changes on my GitHub fork and finally post a patch series on the Mailing

List. I will make sure to keep interacting with the community as well as the mentors regularly.

I aim to write weekly “progress report” blogs, which I will post on my website as well as the List.

Apart from that, I will document anything new I learn as well as my journey in the GSoC program

on my blogs and maybe as self-answered questions on StackOverflow with the aim that they will

help me as well as others in case of reference.

7

https://lore.kernel.org/git/20200318163234.21628-1-shouryashukla.oo@gmail.com/T/#ma3912b761b6deda937691a19c1a070e5e9b34bd7
https://github.com/periperidip/git
https://sites.google.com/view/periperidip

Project Timeline

I have been studying the code of submodule.c, submodule--helper.c and

git-submodule.sh since the submission of my microproject. After studying the codes, I tried

to devise an effective conversion strategy for ‘submodule’. I noticed that submodule.c contains

various helper functions for submodule--helper.c whereas the latter houses the main

"converted" command as of now.

The subcommands ‘set-branch’ and ‘set-url’ will provide easy conversion due to the vast array of

helper functions already available for them. Hence, I intend to implement them before the other

subcommands due to their simplicity in implementation as well as the motivation it will give me to

do more.

After considering a lot of things, and important advice from Christian Couder, I have decided that I

will first implement ‘set-url’ and ‘set-branch’, followed by ‘summary’ and finally ‘add’. Integration

testing and documentation updates will keep following the implementations. To add on, the

conversion of summary might become a tad bit easier due to the existence of a patch to convert

it, which will aid me in learning from the mistakes committed before and thus help me offer an

even more improved version of the subcommand. .

Therefore, after all these considerations, the timeline looks like:

 - Empty Period (Present - May 4)

 → I am writing a paper(on the project I have been working upon) for a conference which I have

to finalise and submit by the first week of April. Hence, I might be inactive in that period.

 → My end-semester exams begin on April 23(tentative, may change due to the Corona

pandemic) hence I might be a bit busy a week or so before their commencement as well as the 14

days in which exams take place.

 → I plan on starting the conversion of ‘set-url’ and ‘set-branch’ in this period. Although I might

be a little occupied I will try my best to implement a basic scaffolding and maybe even complete

some good portions of the subcommands and will keep my mentors posted regarding the same.

 - Community Bonding Period (May 5 - June 1)

 → Get familiar with the community

 → Improve the project workflow: make some timeline changes if necessary.

 → Finish implementation of ‘set-url’ and ‘set-branch’ subcommands

8

https://lore.kernel.org/git/CAP8UFD3BMEqt1+gGgGPHdMQ+BzY6Q84rGcp2UNK=WLusYQuy4g@mail.gmail.com/T/#m73a638ce05bcf70c06080fe4e46a37432ddac4e4
https://lore.kernel.org/git/20170731205621.24305-9-pc44800@gmail.com/
https://github.com/periperidip/UAV-based-wireless-networks-2

 → Update the Documentation

 - Phase 1 (June 2 - July 3)

 → Convert ‘summary’ subcommand

 → Improve CLI parsing(give out better error messages)

 → Update the Documentation

 → Add appropriate tests for integration testing of ‘set-url’, ‘set-branch’ and ‘summary’

- Phase 2 (July 4 - August 10)

 → Convert ‘add’ subcommand

 → Improve the remaining bits of the CLI parsing

 → Update the Documentation

 → Add appropriate tests for integration testing of ‘add’ with the whole system

 - Final Phase (August 11 - August 24)

 → Improve and add Documentation(if there is any still left)

 → Apply final touch-ups to code

If there is some extra time left, I will try to implement some BONUS features.

BONUS features: Consist of command touch ups and improving some bugs such as code

sections with 'NEEDSWORK' tags, improving the test files and maybe improve some previous

implementations of helper functions. Also, there are some incomplete bits of the ‘update’

subcommand as well in the shell file, as pointed out by Dscho, which may need to be corrected.

Workflow

I have divided the project into 3 subprojects(SP).

1.​ SP 1: Convert ‘set-branch’ and set-url’

2.​ SP 2: Convert ‘summary’ and and improve CLI(Command Line Interface) parsing

3.​ SP 3: Convert ‘add’ and improve CLI parsing

9

https://github.com/git/git/blob/v2.26.0/git-submodule.sh#L451-L712
https://github.com/gitgitgadget/git/issues/541#issuecomment-602613250

After discussions with Christian Couder, I plan to start SP1 before GSoC itself. Currently, I am

studying the code in detail and constructing a scaffolding for this implementation. I aim to

complete the leftover bits(in any) of SP1 during Phase 1 and SP2 & SP3 during Phase 2 of GSoC.

As Derrick Stolee advised, the conversion may not be possible in one whole summer, hence, I

think an early start might be needed to finish things in time if possible.

As of now(March 21(UTC)), my progress is described by the following commit. I have

implemented the frontend function(almost) module_summary(). I hope to increase my work

speed once I get a hang of the inner working and coding style of the command.

Availability

The official GSoC period starts from April 27 and ends on August 17. My vacations start from May

10 and will be over by July 13. I can easily devote 45-50 hours per week until the commencement

of my Semester. Other than this project, I have no commitments planned for my vacations. I shall

keep the community posted in case of any change in plans.

Post GSoC

Even after the completion of Google Summer of Code, I plan on continuing my contributions to

Git, on the technical front(in terms of code and documentation contributions) as well as on the

social front(solving people's doubts/problems on the List as well as on StackOverflow). I vision to

convert the remaining of the commands as pointed out by Dscho as well as improve the test files.

I aim to develop mentorship skills as well as the ability to guide others and try to give back to the

community by mentoring and guiding others as well(by reviewing their code, helping them out,

etc.)

Final Remarks

I have a habit of not giving up. I will keep trying things until I succeed at them. Same was my case

with learning to use Git in my freshman year. I was so scared of it for some reason that I refrained

from using ‘git bash’. But I knew that I had to master this tool(or at least learn it to a satisfactory

extent) because of the utility it has in a programmer’s life. I kept going, watching tons of tutorials,

reading the documentation and articles and Lo, here I am writing code for Git.

10

https://lore.kernel.org/git/nycvar.QRO.7.76.6.2001301154170.46@tvgsbejvaqbjf.bet/T/#m232941f6cdcf92b97b3531f6fc582935c06734cf
https://github.com/periperidip/git/commit/db3604f653e02a90145abb56cffb2d4860ececa2
https://lore.kernel.org/git/nycvar.QRO.7.76.6.2001301154170.46@tvgsbejvaqbjf.bet/T/#m637c5c97d42dc68aab85420b5ffcaeb34c270ad3

I hope that you give me the chance to showcase my abilities by considering my proposal for

working with you during the summer of 2020. I will try my best to keep the bar high and deliver

good work. Really looking forward to learning from you :)

Kind Regards,

Shourya Shukla

11

	Convert submodule to builtin
	Contact Information
	
	Background
	Work Environment
	Contributions to Git
	
	The Project: Convert submodule to builtin
	Outline
	
	Submodules and git submodule
	Previous Work
	Current Status of the subcommand and future vision
	Contribution process and interaction with the mentors
	Project Timeline
	Workflow
	Availability
	Post GSoC
	Final Remarks

