Unit 3 Lesson 10
Name(s) Period Date

Practice PT Overview and Rubric - Design a Digital Scene

Overview

You will submit this project and write responses to the reflection questions in the style of the AP® Create Performance
Task. The document below has been constructed to mimic the AP Create Performance Task. Some but not all of the
language is pulled directly from the AP document. Some of the prompts have been modified slightly or simply omitted
for clarity and to better fit the Design a Digital Scene project.

Programming Requirements

Process

The process of creating your program includes individual and collaborative work. Individual work means some portions
of the design, development, and implementation of your program must be completed independently. Collaboration can
take different forms and can occur at different times in the program development process.

You will be required to respond to prompts about your collaboration, as well as to identify the portions of your
program that were created independently. The following are examples of different forms of collaboration:

A. Collaboration can take the form of brainstorming and sharing ideas before the process of writing code begins.
Partners can then choose to work together or independently at selected times during the programming
process.

B. Collaboration can take the form of working together to develop an idea, beginning the programming process
together, and then working independently to add different features to the collaboratively-developed portion of
the program.

C. Collaboration can involve Pair Programming, in which one partner “drives” (enters code) while the other
“navigates” (recommends and reviews code entered by driver), with the partners changing roles after
designated time intervals.

D. Collaboration can involve each partner developing pieces of the program and combining those pieces during
the development process.

E. Collaboration can blend any or all of the above techniques and may include an iterative process in which one
or more of these techniques, or other collaboration techniques, are employed several times in the program
design, development, and testing phases.

Program

Your program must demonstrate a variety of capabilities and implement several different language features that, when
combined, produce a result that cannot be easily accomplished without computing tools and techniques. You will be
required to respond to prompts about the program development process and your program code, including
questions about the abstractions you used. The program must demonstrate:

e Use of several effectively integrated programming elements from the programming language you are using

e Use and creation of abstractions to manage the complexity of your program (e.g., functions/procedures;
abstractions provided by the programming language; APIs)

AP® is a trademark registered and/or owned by the College Board, which was not involved in the production of, and does not
endorse, this curriculum.

Submission Requirements

1. Group Planning Document
As a group, you will submit a single copy of your group planning document. Make sure that all group members’
names are listed on the document.

2. Program Code

When you have completed your digital scene, submit it to your teacher by clicking the “Submit Project” button on
the proper App Lab project in Code Studio (the project associated with this lesson). Submitting indicates to the
teacher that your project is ready to be reviewed.

Your final digital scene code should:

e contain the functions you wrote and the functions you got from your teammates

e make calls to both the functions you wrote and your teammates’ functions in your program.

Note: It is OK if you had to alter your teammates’ code slightly to make it work in your program, or to improve its
functionality.

3. Individual Written Responses
After completing your project, respond to each of the following reflection questions. Your response to any one
prompt must not exceed 300 words.

a. Provide an overview of the purpose of your program and how your program code works. Describe the most
important program features, rather than providing a line-by-line summary of the program code.

b. Describe the most difficult programming problem you encountered while writing your individual code. What was
the difficulty? Explain how you resolved it.

c. Identify an abstraction used in your program and explain how it helped manage the complexity of your
program.

d. Explain in detail points in your development process where collaboration was used.
o Describe the form of collaboration you used. Refer to Process section A-E in your description.
o Explain how this collaboration affected your program development. Cite specific examples from the
collaboration, such as how the group worked together to arrive at solutions, or feedback that you gave
and received.

Rubric - Design a Digital Scene

Component 1 2 3 Score
Group Planning Document
Project Design | The description and/or The description and/or The description and/or
sketch/digital image of sketch/digital image are sketch/digital image are
the design are simplistic limited in details. While it rich in details. A
and lacking in details. Not | might be possible to programmer would have
enough information is program from the design, few questions and find it
given to realistically build | there are too many details easy to work from this
a program from. missing for the design.
programming task to be
easy.
Top-Down The image has not been Most aspects of the image The image has been
Design broken into logical have been broken into broken into logical
components, or most components; however, the components that represent
components have not components are not distinct | top-down design; each
been assigned a or logical and do not component has been
high-level function with a | represent top-down design, | assigned a high-level
descriptive name. or the functions are poorly function with a descriptive
named. name.
Task Tasks have not been Tasks have been divided Tasks have been prioritized
Assignments evenly divided among among members but the and evenly divided among
team members and/or assignments and members with
tasks have not been prioritizations do not reflect | considerations made for
prioritized. a realistic estimate of the timing or problems that
time constraints or might arise.
anticipate problems that
might arise.
Functions and The program does not The program makes limited | Appropriate levels of
Abstraction make use of the or inconsistent use of levels | abstraction are expressed
high-level functions of abstraction and the in code using the high-level
agreed upon by the team. | functions created by the functions created by the
team members. team. (Modifications of
functions are allowed.)
Functions with | The program does not Program contains a function | Program contains at least
Parameters feature a function with a with a parameter that is one function with a
parameter. used in a limited or trivial parameter to control
way. behavior in a meaningful
way.
Loops The program does not A loop is used in a limited or | A loop is used in a
feature a loop. trivial way to repeatedly meaningful way to
execute portions of code. repeatedly execute portions
of code.

Functionality

There is a weak
connection between the
output of your function(s)
and the function
descriptions agreed upon
by the group.

There is a moderate
connection between the
output of your function(s)
and the function
descriptions agreed upon
by the group.

There is a clear and
obvious connection
between the output of your
function(s) and the function
descriptions agreed upon
by the group.

Final Scene
Incorporates
Work from
Teammates

Final digital scene does
not make use of code
written by other
teammates.

Final digital scene uses
code written by some of the
other teammates.

Final digital scene uses
code written by each of the
teammates. (Note:
Students may make
alterations to their
teammates’ code as
needed to function correctly
in the final scene.)

Individual Written Responses

development of the
program without clearly
describing any specific
problems.

program, but it includes little
or no information about how
any problems were
addressed.

a. Program The connection between | There is a logical There is a compelling
Overview the program and its connection between the connection between the
purpose is unclear. Or it program and its purpose. Or | program and its
is unclear how the the purpose of the program | stated purpose, supported
program features connect | is weakly supported by the by details of the important
to the purpose. features identified. features identified.
b. Difficulties The response generally The response describes the | The response fully
Encountered describes the developmental steps of the | describes the development

details that enable the
reader to understand the
the difficulties that were
encountered and how they
were resolved.

c. Abstraction

The explanation of how
the selected code

illustrates abstraction is
incorrect or incomplete.

The explanation of how the
selected code illustrates
abstraction is mostly
complete but lacks a clear
explanation of how it helps
manage the complexity of
the program.

The explanation of how the
selected code illustrates
abstraction is
well-supported by details
and clearly describes how it
helps manage the
complexity of the program.

d. Collaboration

The response describes a
non-collaborative
process, or an ineffective
collaborative process.
The explanation does not
describe how the process
affected the program
development.

The response cites some
effective collaboration, but it
is unclear how the
collaboration affected the
program development or
any feedback was provided
or incorporated.

The response describes
effective collaboration and
cites specific examples of
how collaboration impacted
the program development.
Examples of providing and
incorporating feedback are
included.

	Overview

