
 TECHNICAL DOCUMENT
BAHMNI integration with DHIS2 Tracker

ThoughtWorks

Table Of Contents
1. Introduction

1.1 Purpose
1.2 Scope
1.3 Definitions and Abbreviations

2. Overview
2.1 Architecture
2.2 Business Flow

3. Bahmni-DHIS2 Integration
3.1 User Interface

3.1.1 Manage mapping
3.1.2 Sync Data to DHIS2
3.1.3 Logs

3.2 Application Components
3.2.1 Mapping Service
3.2.2 Preview Service
3.2.3 Sync Data Batch

3.3 DHIS2 sync API
3.3.1 Creating a new tracked entity instance
3.3.2 Enrolling a tracked entity instance into a program
3.3.3 Creating an event for a tracked entity instance for a given program

3.4 Data Model
3.4.1 Mapping table
3.4.2 Tracker tables

A. Instance_tracker table
B. Enrollment_tracker table
C. Event_tracker table

3.4.3 Marker table
3.4.4 Log table

Appendix

1. Introduction

Patient data should flow from the Bahmni EMR system implemented at the static PSI clinic to
DHIS2 cloud to generate the reports from DHIS2.

This data flow is only a one-way sync from Bahmni to DHIS2. There is no intention to push
changes back from DHIS2 cloud to the clinics.

The application supports the decentralized Bahmni, where each clinic’s Bahmni system interacts
with a centralised DHIS server. Patient movement across the clinic is also handled in the
solution. Refer here for more details.

In DHIS2 programs are configured as events with registration(Line level data), where patient
registration information is captured along with the program enrollment and events.
From Bahmni we will be sending the below patient data:

1.​ Patient registration
2.​ Patient program enrollment
3.​ Data captured through forms in each visit

Today only HTS program data from Novo system is getting synced to DHIS2. The integration
between Bahmni and DHIS2 should allow to incorporate data sync for other services which are
offered in the clinic.

This technical document is a reference document which can be used to design and develop the
solution for integrating Bahmni system with DHIS2 system.

Here you can checkout OpenMRS Talk about this service.

1.1 Purpose
This document provides brief overview of the Integration Service and its architecture. It is
designed to assist the developers or the owner of the Bahmni Application in configuring the
Integration service.

1.2 Scope
This document is with reference to the following versions of the systems:

●​ Bahmni : 0.90
●​ DHIS2: 2.30 (Build revision: ca284eb)
●​ Bahmni Mart: 1.0.0 (latest RPM which includes date created)

https://talk.openmrs.org/t/bahmni-dhis2-integration-for-line-level-data-events-with-registration/18943
https://github.com/bahmni-msf/bahmni-mart/commit/f114de93dafc89d64dde231aec9473c694de99c2

1.3 Definitions and Abbreviations

Abbreviated Term Description

HIV HIV testing service

DHIS2 District health Information System 2

PSI Population Services International

NAH New Africa House

UID Unique Identification

API Application program interface

JSON JavaScript Object Notation

SQL Structured Query Language

UI User Interface

PWA Progressive Web App

SCDF Spring Cloud Data Flow

2. Overview

2.1 Architecture

This architecture involves the following entities:

●​ Bahmni Client: Laptops/Tablets used by the providers to access Bahmni.

●​ Bahmni Connect (PWA) : An app which allows a user to access Bahmni in areas with
limited internet connectivity. The provider can later come into an area with connectivity to
a Bahmni server, and synchronize the PWA on their Android device/Chromebook with
the Bahmni server.

●​ Bahmni Server: The open source EMR server and a full Hospital Management System. It
maintains its own (MySQL) database which is the source of truth.

●​ Bahmni Mart Service: A standalone application which will create various tables in an
analytics DB (PostgreSQL) from Bahmni/Openmrs hierarchical DB (MySQL).

●​ Integration Service: An application (plugged into SCDF, dependent on Bahmni Mart) to
perform data sync from Bahmni server to DHIS2 server. It would maintain tables in the
same analytics DB (PostgreSQL) as that of Bahmni Mart. These tables would persist
information for translating respective Bahmni data to DHIS2 data.

●​ DHIS2 Server: A web-based open-source information system with awesome
visualization. It maintains its own (PostgreSQL) database which is used for the reporting
and analytics.

2.2 Business Flow
Below are the business process flow diagram at Level 0 and Level 1 to show the interaction of
user at various points.

1.​ Business process flow - Level 0

2.​ Business process flow - Level 1

3. Bahmni-DHIS2 Integration

3.1 User Interface

The UI module of the Integration Service is called ‘DHIS2 sync’ module. It will be available on
the Bahmni home page as shown below. Only privileged users would have access to this
module.

 Bahmni Home Page

On clicking the ‘DHIS2 sync’’ module the user would be redirected to the ‘DHIS2 sync’ landing
page. From here the following functionalities would be available:

1.​ Manage Mapping (Add/Edit)
2.​ Sync to DHIS
3.​ Logs

‘DHIS2 sync’ landing page

3.1.1 Manage mapping

There is a need to map the Bahmni table to DHIS2 data elements. This information will be
stored as mappings (JSON format) which will be used to sync the data to DHIS2.

User needs to provide mapping information for some categories. User will be asked to select the
database table from a dropdown for each of the above three categories. Based on the selection,
it will populate all the table columns in the form. The user needs to enter the DHIS2 data
element UIDs in the editable text boxes against the columns.

The categories for which the mapping information is required are:

1.​ Patient registration
○​ Herein, the user has to enter at least one column (person attribute) mapping.
○​ The user also has the benefit of (optionally) marking one or more person

attributes as ‘searchable’ and ‘configurable’.
○​ Before syncing a new patient to DHIS it would query the DHIS server for the

presence of this new patient using the ‘searchable’ fields to avoid the duplication
of the patient in DHIS.

○​ If the search doesn’t return any UIDs then it will sync the patient as a NEW
patient. If the search returns a single UID then it would sync the patient data as
UPDATE patient using the UID.

○​ If the search returns multiple results, then the ‘comparable’ fields will be used to
filter down the result set.

○​ If the filtered result returns no UIDs then it will sync the patient as a NEW patient.
If the search returns a single UID then it would sync the patient data as UPDATE
patient using the UID.

○​ Although if the search returns multiple UIDs still, then the result set is ignored
and the patient is synced as a NEW patient.

2.​ Program enrollment

○​ Herein, the user has to also answer a question: Do you want to open latest
completed enrollment?

○​ For a given patient, some programs like HIV would have only single enrollment in
the lifetime. Whereas, the same patient can have multiple enrollments for a single
program like Pregnancy. To handle both types of programs a configuration is
available in the mapping. This configuration will decide to Open an existing
closed enrolment or create a new enrolment in DHIS.

○​ Detailed impact of setting this configuration is shown in the appendix.

3.​ Program event
○​ Herein, at least one data element has to be entered.

Below are the screenshots:

DHIS2 Mapping Dashboard

Adding new mapping

 Editing existing mapping

3.1.2 Sync Data to DHIS2

From here the following actions can be performed:
1.​ Preview data
2.​ View last successful sync date
3.​ Send data to DHIS2

User will be validating the data before syncing to DHIS2. For this purpose user could click on
‘Preview’ button to view and validate the delta data which is yet to synced to DHIS2. Once the
data is validated user would click on ‘Send to DHIS2’ to sync the delta data to DHIS2.

Sync data to DHIS

3.1.3 Logs

For every data sync to DHIS2 a log entry will be made along with the sync status and additional
information.

Logs for DHIS2 sync activity

3.2 Application Components

A Spring Cloud Data Flow (SCDF) server is configured with Bahmni Mart application. This is an
existing platform. On this platform, a new Spring Boot Application ‘Bahmni-DHIS2 Integration’
application will be created to sync data from Bahmni to DHIS2. This application would share the
Bahmni Mart database and would be configured by SCDF dashboard.
This application would contain several services and an embedded Spring Batch Application.
The services will be used to respond to the REST API requests. The Spring Batch application
would sync the data in 3 steps as there are 3 types of data:

1.​ Patient Data: All the attributes of the patient.

2.​ Program Data: All the details of the program in which the patient is registered.

3.​ Event Data: All the detailed observations per patient captured as part of the Program.

The detailed API calls for each of these data syncs is provided in next section here.

3.2.1 Mapping Service

The smallest unit in DHIS2 is a data element (analogous to Bahmni’s concept). And each data
element is identified by a unique UID. There is a need to map the Bahmni Mart tables’ column to
DHIS2 data elements. The ‘Mapping Service’ would maintain this mapping information for each
program. It would be captured in JSON format as shown below and saved in ‘Mapping Table’.

Mapping JSON example

As in the given example, the key name Gender in Bahmni would be represented as
adBbi66uP8B in DHIS2. This conversion should be configurable as it varies between
implementations. UI is provided in order to define these mappings. For detailed Mapping table
format refer here

3.2.2 Preview Service

Preview service would enable user to view the (delta) data which is yet to be synced. This would
be helpful for the user to validating the data before syncing. Only the delta data that has not
been synced previously to DHIS2 will be shown.
This service uses Atom feed service and has its own set of Marker table(s).
When user clicks on the ‘Preview’ button then the Preview service will get a REST API request
and respond with all the data being synced:

1.​ It reads the last_synced_date from the Marker table
2.​ Based on this date the Preview Service will request Bahmni Mart to get all the required

information (uses SQL to gather this information)

3.2.3 Sync Data Batch

In the ‘DHIS2 Sync’ module’s landing page, user would click on ‘Sync data to DHIS2’ which will
be redirected to another page. Here once the user clicks on ‘Send data to DHIS2’ then this
Spring Batch application gets invoked. It syncs data from Bahmni to DHIS2 in a bulk job.

The application would execute the following steps to sync data:

1.​ Sync Patient Data
A.​ Fetch the delta patient data (in chunks) using the Marker and Mart Tables
B.​ Join the patient (Bahmni) ID with Patient (DHIS2) UID from the Instance_Tracker

table. The patients whose UID is not available in the table are the NEW patients.
The patients who have a UID recorded in the table are UPDATED patients.

C.​ Get the patient list from the DHIS based on the searchable & comparable
attributes. Based on the final resultset update the patient UIDs in this delta data.

D.​ Get the patient mapping from Mapping table.
E.​ Augment this patient data with the mapping information to formulate the REST

API request body to be sent to DHIS2.
F.​ Send patient data (NEW & UPDATED together) to DHIS2.
G.​ Update Instance_tracker table based on the response.

2.​ Get Enrolments’ information from DHIS

A.​ Fetch the delta enrolment data and its events (in chunks) using the Marker &
Mart Tables.

B.​ Fetch all the enrollments’ details for the patients whose enrollments are yet to be
synced.

C.​ Depending on the configuration set in the mapping to open a closed enrollment,
update the UIDs in-memory for the enrollments.

3.​ Sync Newly Completed Enrollments with its Events

A.​ Fetch all the enrollments’ details for the patients whose enrollments are yet to be
synced with status as COMPLETED.

B.​ Join the enrolment data with Program-Name, Program-Date from the
Enrolment_Tracker table (based on the Patient UID from the previous step). The
enrolments whose Enrolment UID is not available in the table are the NEW
enrolments.

C.​ Join the event data with event (DHIS2) UID, Visit-ID from the Event_Tracker
table.The events whose UID is not available in the table are the NEW events.

D.​ Get the Program enrollment mapping and Event mapping from Mapping table.
E.​ Augment this patient enrollment data with the mapping information to formulate

the REST API request body to be sent to DHIS2.
F.​ Send NEW enrollment data (with status as ACTIVE) with its events to DHIS2.
G.​ Update Enrollments_tracker & Event_tracker tables based on the response.
H.​ Send NEW enrollment data (with status as COMPLETED) to DHIS2.
I.​ Update Enrollments_tracker based on the response.

4.​ Sync Updated Completed Enrollments with its Events

A.​ Fetch all the enrollments’ details for the patients whose enrollments are yet to be
synced with status as COMPLETED.

B.​ Join the enrolment data with Enrolment (DHIS2) UID, Program-Name,
Program-Date from the Enrolment_Tracker table (based on the Patient UID from
the previous step). The enrolments who have a UID recorded in the table are
UPDATED enrolments.

C.​ Join the event data with event (DHIS2) UID, Visit-ID from the Event_Tracker
table. The events whose UID is not available in the table are the NEW events.
The events who have a UID recorded in the table are UPDATED events.

D.​ Get the Program enrollment mapping and Event mapping from Mapping table.
E.​ Augment this patient enrollment data with the mapping information to formulate

the REST API request body to be sent to DHIS2.
F.​ Send UPDATED enrollment data with its events to DHIS2.
G.​ Update Enrollments_tracker & Event_tracker tables based on the response.

5.​ Sync Newly Active Enrollments with its Events

A.​ Fetch all the enrollments’ details for the patients whose enrollments are yet to be
synced with status as ACTIVE.

B.​ Join the enrolment data with Program-Name, Program-Date from the
Enrolment_Tracker table (based on the Patient UID from the previous step). The
enrolments whose Enrolment UID is not available in the table are the NEW
enrolments.

C.​ Join the event data with event (DHIS2) UID, Visit-ID from the Event_Tracker
table.The events whose UID is not available in the table are the NEW events.

D.​ Get the Program enrollment mapping and Event mapping from Mapping table.
E.​ Augment this patient enrollment data with the mapping information to formulate

the REST API request body to be sent to DHIS2.
F.​ Send NEW enrollment data with its events to DHIS2.
G.​ Update Enrollments_tracker & Event_tracker tables based on the response.

6.​ Sync Updated Active Enrollments with its Events

A.​ Fetch all the enrollments’ details for the patients whose enrollments are yet to be
synced with status as ACTIVE.

B.​ Join the enrolment data with Enrolment (DHIS2) UID, Program-Name,
Program-Date from the Enrolment_Tracker table (based on the Patient UID from
the previous step). The enrolments who have a UID recorded in the table are
UPDATED enrolments.

C.​ Join the event data with event (DHIS2) UID, Visit-ID from the Event_Tracker
table. The events whose UID is not available in the table are the NEW events.
The events who have a UID recorded in the table are UPDATED events.

D.​ Get the Program enrollment mapping and Event mapping from Mapping table.
E.​ Augment this patient enrollment data with the mapping information to formulate

the REST API request body to be sent to DHIS2.

F.​ Send UPDATED enrollment data with its events to DHIS2.
G.​ Update Enrollments_tracker & Event_tracker tables based on the response.
H.​ Update Marker table with the sync status.

In the case of failure of either of the above steps:

1)​ The Marker Table would not be updated.
2)​ The sync would be aborted without moving on with the rest of the steps.
3)​ The Log table would be updated with the sync status.

3.3 DHIS2 sync API

To sync the data for any program the following 3 API calls have to be made to DHIS2:

1)​ Creating a new tracked entity instance
2)​ Enrolling a tracked entity instance into a program
3)​ Creating an event for a tracked entity instance for a given program

3.3.1 Creating a new tracked entity instance

A tracked entity Instance in DHIS2 world is analogous to a new patient in Bahmni world. For
creating a new patient in the system, you will be working with the trackedEntityInstances
resource. The ‘TrackedEntityType’ represents tracking a ‘Person’ entity.

NEW patient: Every successful creation of tracked entity Instance would be associated with a
unique UID in DHIS2. The same is available under ‘reference’ in the response body.

UPDATE patient: For updating any patient details the same UID must be sent as
“trackedEntityInstance” to update its details in DHIS2.

URL: http://<DHIS2-SERVER>/api/trackedEntityInstances?strategy=CREATE_AND_UPDATE

Request Body Sample:

Response Body (Success) Sample:

Response Body (Updated) Sample:

3.3.2 Sync Newly Completed Enrollments with its Events

For enrolling patients into a program one will need the identifier of the patient (which was
generated as UID in the previous step from the trackedEntityInstances resource). For enrolling a
new patient into a program, you will be working with the programs resource.
NEW Patient enrollment: Every successful enrollment would be associated with a unique
program identifier UID in DHIS2.
UPDATE Patient enrollment: For updating any enrollment the same UID must be sent as
“enrollment” to update its details in DHIS2.
Note: Deletion of enrollment is out of scope.

Observations captured as part of a program in Bahmni world is analogous to the event data in
DHIS2 world.
For capturing event for a program one will need the unique id of the patient (which was
generated as UID in the previous step from the programs resource) which is mandatory for
events with registration. For capturing a new event for a program, you will be working with the
programs resource, programStages resource, trackedEntityInstances resource and
organisationUnits resource of DHIS2.

NEW event: Every successful event would be associated with a unique event identifier UID in
DHIS2. The number of successful data values imported would be mentioned in the response as
imported count.
UPDATE event: For updating any event the same UID must be sent as “event” to update its
details in DHIS2. However the import count in updation would represent the updates for number
of patients along with 200 success code would be received.
Note: All the events will be synced with status COMPLETED.

URL: http://<DHIS2-SERVER>/api/enrollments?strategy=CREATE_AND_UPDATE

Request Body (with ACTIVE status) Sample:

Response Body (Success) Sample:

Response Body (Failure) Sample:

Request Body (with COMPLETED status) Sample:

3.3.3 Sync Updated Completed Enrollments with its Events

The URL and API format remains the same as above.

Request Body Sample

Response Body (Success) Sample:

3.3.4 Sync New Active Enrollments with its Events

Request Body Sample:

Response Body (Success) Sample:

Response Body (Failure) Sample:

3.3.5 Sync Updated Active Enrollments with its Events

Request Body Sample:

Response Body (Success) Sample:

3.4 Data Model
edit the model

To translate the data from Bahmni world to DHIS2 world the Integration Service would maintain
a database with the following tables:

1)​ Mapping Table
2)​ Tracker Tables
3)​ Marker Table
4)​ Log Table

https://app.quickdatabasediagrams.com/#/schema/MD1UJjqVeUmtjFgKnEL7vA

3.4.1 Mapping table

mapping_
name

lookup_table mapping_json config

HTS {"instance":"hts_instan
ce_table","enrollments"
:"hts_program_enrollm
ent_view","event":"hts_
program_events_table
"}

{"instance":{"Name":"as
df","Age":"dfgdfg",
“Gender”:”jfore73dg”},"e
vent":{"phtc":"asdf"}}

{"searchable":["Name"],"comparab
le":["Age",
“Gender”],"openLatestCompletedE
nrollment":"yes"}

TBS {"instance":"tbs_instan
ce_table","enrollments"
:"tbs_program_enrollm
ent_view","event":"tbs_
program_events_table
"}

{"instance":{"Name":"as
df","Age":"dfgdfg",
“Gender”:”jfore73dg”},"e
vent":{"fever":"asdf"}}

{"searchable":[“Name”],"comparabl
e":[],"openLatestCompletedEnroll
ment":"yes"}

FPS {"instance":"fps_instan
ce_table","enrollments"
:"fps_program_enrollm
ent_view","event":"fps_
program_events_table
"}

{"instance":{"Name":"as
df","Age":"dfgdfg",
“Gender”:”jfore73dg”},"e
vent":{"semester":"asdf"
}}

{"searchable":[],"comparable":[],"o
penLatestCompletedEnrollment":"
no"}

3.4.2 Tracker tables

The Tracker table is normalised into 3 tables
A.​ Instance_tracker table
B.​ Enrollment_tracker table
C.​ Events_tracker table

A. Instance_tracker table

patient_ID instance_ID

NAH009786 CHhFLGOCnza

NAH009624 MkWlpA4hdgY

B. Enrollment_tracker table

instance_ID enrollment_ID program program_unique_id status

CHhFLGOCnza Y4Z9kEMOnGD SsrIUFxWi5N 34 ACTIVE

MkWlpA4hdgY ud1D1IIngW8 qjiYT75fJEPQ 55 ACTIVE

C. Event_tracker table

instance_ID event_ID event_unique_id program program_stage

CHhFLGOCnza qT40zapm99o 1049 SsrIUFxWi5N huegsu65KD

MkWlpA4hdgY tYcCYkLXX9Q 1048 qjiYT75fJEPQ kdYEP75jdJ

3.4.3 Marker table

program_name category last_synced_date

HTS Instance 2018-06-17 20:30:00.0

TBS Enrollment 2018-04-11 22:00:00.0

HTS Enrollment 2018-06-17 20:30:00.0

HTS Event 2018-06-17 20:30:00.0

3.4.4 Log table

audit_log_
ID

program_
name

synced_b
y

comments sync_date sync_stat
us

sync_failur
e_message

1 HTS admin Validated
on 22 Feb

2018-02-2
2

Success

2 TBS admin Validated
on 23 Feb

2018-02-2
3

Failed Please
contact
Admin
team.

Appendix

The supported enrollment sync scenarios for the config “Do you want to open latest completed
enrollment?” is set to YES.

The supported enrollment sync scenarios for the config “Do you want to open latest
completed enrollment?” is set to NO.

	1. Introduction
	1.1 Purpose
	1.2 Scope
	
	1.3 Definitions and Abbreviations

	2. Overview
	2.1 Architecture
	
	2.2 Business Flow

	
	3. Bahmni-DHIS2 Integration
	3.1 User Interface
	
	
	
	3.1.1 Manage mapping
	
	
	
	3.1.2 Sync Data to DHIS2
	
	
	3.1.3 Logs
	

	3.2 Application Components
	3.2.1 Mapping Service
	3.2.2 Preview Service
	3.2.3 Sync Data Batch

	3.3 DHIS2 sync API
	3.3.1 Creating a new tracked entity instance
	3.3.2 Sync Newly Completed Enrollments with its Events
	
	3.3.3 Sync Updated Completed Enrollments with its Events
	
	3.3.4 Sync New Active Enrollments with its Events
	
	3.3.5 Sync Updated Active Enrollments with its Events

	
	3.4 Data Model
	3.4.1 Mapping table
	
	3.4.2 Tracker tables
	A. Instance_tracker table
	B. Enrollment_tracker table
	C. Event_tracker table

	
	3.4.3 Marker table
	3.4.4 Log table

	Appendix

