
Flink Python UDF Environment and
Dependency Management

Wei Zhong, Dian Fu

Motivation
The FLIP-58 which aimed for supporting Python UDF is already accepted. As a critical part of
python UDF, the environment and dependency management of users' python code is not
supported yet. That means users can not introduce third-party libraries in their UDFs currently,
which is not acceptable in most scenarios. It will be a great benefit to support environment and
dependency management.

The implementation plan of FLIP 58 includes environment and dependency management but
lacks a detailed description. This design document describes it in detail.

Goals
●​ Support uploading python libraries to clusters and importing them in UDFs in flink python

API
●​ Support uploading whole python environment(usually generated by virtualenv, conda,

pipenv and so on) to clusters and running UDFs on it in flink python API
●​ Support uploading normal files to clusters in flink python API
●​ Only support process mode in the first version

Proposed Changes

Public Interfaces
4 new public method will be added to Python TableEnvironment and one new public method will
be added to Python TableConfig:

class TableEnvironment(object):

 ...

 def add_python_file(self, file_path):
 pass

 def set_python_requirements(self, requirements_list_file, requirements_cached_dir=None):
 pass

 def add_python_archive(self, archive_path, extract_name):
 pass

 def set_environment_variable(self, key, value):
 pass

class TableConfig(object):

 …

 def set_python_executable(self, exec_path):
 pass

add_python_file(self, file_path)
This interface is used to upload the python libraries that can be imported directly, e.g. single .py
files, egg packages and some zip packages. The parent directories of .py files and the
packaging files will be append to the PYTHONPATH of python workers so that they can be
imported in UDF.

set_python_requirements(self, requirements_list_file,
requirements_cached_dir=None)
This interface is used to upload the python libraries which need to be installed before importing.

To use this interface you should first prepare a "requirements.txt" file which is often generated
by executing "pip freeze > requirements.txt" in users' python environment. If you write it yourself
please make sure that it contains all transitive dependencies.

Then you can prepare a directory and download all the packages listed in the requirements.txt
to the directory. This step is optional. A recommended approach is executing the following
command:

pip download -d {cached_dir} -r {requirements_txt_path} --no-binary :all:

After that, call this interface with the path of requirements.txt and the cached dir if exists. Before
running python worker, the packages listed in requirements.txt will be installed to the
environment of python worker one by one according to their order in requirements.txt. If users
specified the cached dir, it will be uploaded to cluster and the installation program will search
packages in this directory instead of default repository(usually pypi.org), which can work in the
environments without Internet.

This is a more complete example of this interface, suppose we need to install numpy on the
cluster:

command executed in shell:
echo numpy==1.16.5 > requirements.txt
pip download -d cached_dir -r requirements.txt --no-binary :all:

python code:
t_env.set_python_requirements("requirements.txt", "cached_dir")

add_python_archive(self, archive_path, extract_name)
This interface is used to upload python environment and normal files to cluster. The parameter
"archive_path" is the path of the zip file which contains the python environment or other files
users want to upload and the parameter "extract_name" specifies the directory name to store
extracted content of the zip file. The extracted directory will be moved to working directory of
python worker, users could access their files using the relative path like "{extract_name}/xxxx".

If the uploaded zip file is a python environment, please make sure that the python executable
file can run on the platform which the cluster is running on, and the path of python executable
file must be specified by TableEnvironment#get_config().set_python_executable(), e.g.:

Suppose the python executable file is py37/bin/python
command executed in shell:
zip -r venv.zip py37

python code:
t_env.add_python_archive("venv.zip", "my_venv")
t_env.get_config().set_python_executable("my_venv/py37/bin/python")

set_environment_variable(self, key, value)
This interface is used to set the environment variable of python worker. Python itself and many
python libraries like pip and virtualenv can be configured using specific environment variables,
so we should allow users to set the environment variable of python workers to cover more use
cases of environment management.

set_python_executable(self, exec_path)
This interface is user to set the path of python executable file on cluster to run python workers.
The parameter of this interface is a job-wide configuration, so put this interface to TableConfig.

New Options of PythonDriver
It is necessary to support managing dependencies and environment through command line so
that the python jobs with additional dependencies can be submitted via "flink run" and web UI or
other approached in the future. The PythonDriver class will support several new options as
follows:

Short Name Full Name Syntax Description

-pyarch --pyArchives -pyarch
<archiveFile1>#<extract
Name>,<archiveFile2>#<
extractName>

The option is equivalent
to "add_python_archive".
"," can be used as the
separator for multiple
archives and "#" can be
used as the separator if
"extractName" exists.

-pyexec --pyExecutable -pyexec
<pythonInterpreterPath>

This option is equivalent
to
`TableEnvironment#get_c
onfig().set_python_execu
table()`.

-pyfs --pyFiles -pyfs <filePaths> This option already exists
but it only appends the
file to client side
PYTHONPATH currently.
Now it will upload the file
to cluster and append it
to python worker’s
PYTHONPATH, which is
equivalent to
"add_python_file".

-pyreq --pyRequirements -pyreq
<requirementsFile>#<req
uirementsCachedDir>

This option is equivalent
to
"set_python_requirement
s". "#" can be used to as
the separator if
"requirementsCachedDir"
exists.

Implementation

Implementation of SDK API
Flink has provided a distributed cache mechanism and allows users to upload their files using
"registerCachedFile" method in ExecutionEnvironment/StreamExecutionEnvironment. The
python files users specified through "add_python_file", "set_python_requirements" and
"add_python_archive" are also uploaded through this method eventually.

Besides the python files, additional information, such as file names of python files(Flink
distributed cache will wipe the origin file names of uploaded files), environment variables and
the target directory names of python archives, is also need to upload to cluster. These metadata
will be serialized into json strings and stored in GlobalJobParameters object in ExecutionConfig,
which can be propagated to every running tasks.

All logic of the environment and dependency management interfaces can be put in an
independent class so that it can be easy to test. A simple architecture is as follows:

class DependencyManager(object):

 PYTHON_FILE_MAP = "PYTHON_FILE_MAP"
 PYTHON_REQUIREMENTS = "PYTHON_REQUIREMENTS"
 PYTHON_REQUIREMENTS_FILE = "PYTHON_REQUIREMENTS_FILE"
 PYTHON_ARCHIVES_MAP = "PYTHON_ARCHIVES_MAP"
 PYTHON_ENVIRONMENT_MAP = "PYTHON_ENVIRONMENT_MAP"

 def __init__(self):
 ...

 def add_python_file(self, file_path):
 ...

 def set_python_requirements(self, requirements_list_file, requirements_cached_dir):
 ...

 def add_python_archive(self, archive_path, extract_name):
 ...

 def set_environment_variable(self, key, value):
 …

 def transmit_to_jvm(self, j_env, conf):
 conf.set_string(PYTHON_FILE_MAP, ….)
 conf.set_string(PYTHON_REQUIREMENTS, ….)
 …
 j_env.registerCachedFile(xxx, xxx)
 ...

class TableEnvironment(object):

 def __init__(self, ...):
 ….
 self._dependency_manager = DependencyManager()

 def add_python_file(self, file_path):
 self._dependency_manager.add_python_file(file_path)

 def set_python_requirements(self, requirements_list_file, requirements_cached_dir):
 self._dependency_manager.set_python_requirements(requirements_list_file, requirements_cached_dir)

 def add_python_archive(self, archive_path, extract_name):
 self._dependency_manager.add_python_archive(archive_path, extract_name)

 def set_environment_variable(self, key, value):
 self._dependency_manager.set_environment_variable(key, value)

 ...

 def execute(self, job_name):
 self._dependency_manager.transmit_to_jvm(self._j_tenv.execEnv(), self.get_config().get_configuration())
 self._j_tenv.execute(job_name)

Implementation of New PythonDriver Options
The PythonDriver will parse those new parameters and store them in a map. When the
DependencyManager(see previous section) object creates, it will access the map and register
the content of the map into itself. The sequence diagram is as follows:

Data Structures used in Operator
Two new roles will be introduced, named PythonDependencyManager and
PythonEnvironmentManager separately.

PythonDependencyManager is used to parse the Python dependencies uploaded from client,
and provide that information to PythonEnvironmentManager.
The structure of PythonDependencyManager is as follows:

public class PythonDependencyManager {

 // create PythonDependencyManager from ExecutionConfig.getGlobalJobParameters().toMap() and
 // distributedCaches.
 public static PythonDependencyManager create(
 Map<String, String> dependencyMetaData,
 DistributedCache distributedCache) {...}

 // key is the absolute path of the files to append to PYTHONPATH, value is the origin file name
 public Map<String, String> getPythonFiles() {...}

 // absolute path of requirements.txt
 public String getRequirementsFilePath() {...}

 // absolute path of the cached directory which contains user provided python packages
 public String getRequirementsDirPath() {...}

 //path of the python executable file
 public String getPythonExec() {...}

 // key is the name of the environment variable, value is the value of the environment variable
 public Map<String, String> getEnvironmentVariable() {...}

 // key is the absolute path of the zip file, value is the target directory name to be extracted to
 public Map<String, String> getArchives() {...}
}

PythonEnvironmentManager is used to manage the execution environment of python worker.
The structure of PythonEnvironmentManager is as follows:

public interface PythonEnvironmentManager {

 /**
 * Create Apache Beam Environment object of python worker.
 */
 RunnerApi.Environment createEnvironment();

 /**
 * Create the RetrievalToken file which records all the files that need to be transferred via Apache Beam's
 * ArtifactService.
 */

 String createRetrievalToken();

 /**
 * Delete generated files during above actions.
 */
 void cleanup();
}

Flink Python UDF is implemented based on Apache Beam Portability Framework which uses a
RetrievalToken file to record the information of users’ file. We will leverage the power of Apache
Beam artifact staging for dependency management in docker mode.

PythonEnvironmentManager has two implementations, ProcessEnvironmentManager for
process mode and DockerEnvironmentManager for docker mode.

Implementation of PythonEnvironmentManager

ProcessEnvironmentManager
The structure of ProcessEnvironmentManager is as follows:

public class ProcessEnvironmentManager implements PythonEnvironmentManager {

 public static ProcessEnvironmentManager create(
 PythonDependencyManager dependencyManager,
 String tmpDirectoryBase,
 Map<String, String> systemEnv) {

 }

 public ProcessEnvironmentManager(...) {
 prepareEnvironment();
 }

 @Override
 public void cleanup() {
 // perform the clean up work
 removeShutdownHook();
 }

 @Override
 public RunnerApi.Environment createEnvironment() {
 // command = path of udf runner
 return Environments.createProcessEnvironment("", "", command, generateEnvironmentVariable());
 }

 @Override
 public String createRetrievalToken() {
 // File transfer is unnecessary in process mode,
 // just create an empty RetrievalToken.
 return emptyRetrievalToken;
 }

 private Map<String, String> generateEnvironmentVariable() {
 // construct the environment variables such as PYTHONPATH, etc
 }

 private void prepareEnvironment() {
 registerShutdownHook();
 prepareWorkingDir();
 }

 private void prepareWorkingDir() {...}

 private Thread registerShutdownHook() {
 Thread thread = new Thread(new DeleteTemporaryFilesHook(pythonTmpDirectory));
 Runtime.getRuntime().addShutdownHook(thread);
 return thread;
 }
}

This class is used to prepare and cleanup the working directory and other temporary directories
of python worker. It needs the information provided by PythonDependencyManager and a
temporary directory as the root of the python working directory. The configured temporary
directory of current task manager can be obtained using
"getContainingTask().getEnvironment().getTaskManagerInfo().getTmpDirectories()". In current
design, 3 kinds of directory are needed to prepare:

1.​ The directories store the files used to append to PYTHONPATH

Flink distributed cache will wipe the origin file name, including the file format suffix of the
uploaded file. But different file formats have different logics to append files to PYTHONPATH:

●​ If the target file is .py file, we must restore its origin file name and append its parent
directory to PYTHONPATH.

●​ If the target file is egg file or other packaging file which can be imported directly, just
append itself to PYTHONPATH.

So it is necessary to restore the original file names of uploaded python files. To avoid naming
conflict we should store them in separate directories. Symbolic links can be used here to save
copy time and disk space.

2.​ The directory stores pip install results of the packages listed in the uploaded
requirements.txt

Apparently we should not install the users' packages into system python environment. A feasible
approach is using "--prefix" param of pip to redirect the install location to a temporary directory,
and then append the "bin" directory under the location to PATH variable and append the
"site-packages" directory to PYTHONPATH variable.

3.​ The directory stores the extracted results of the uploaded archives

This directory is used as the working directory of python workers. The contents of uploaded
python archives, including users' python environment, will be extracted to the specified
sub-directory and can be accessed using relative path in python worker and its launcher script.

This class should create these directories, and remove them when the task is closing. It is also
responsible for adding shutdown hook to ensure the created directories can be deleted once the
jvm exits unexpectedly, and removing the shutdown hook when the task is closed to prevent
memory leaks.

After the above directories are all ready, the shell script to launch python workers will be
executed. The installation of required packages and the changing of working directory will be
completed in this script. For each line of the requirements.txt file, the following command will be
executed:

just indicate the intention of appending the site-packages directory to PYTHONPATH
actual code are more complicated
PYTHONPATH=${install_directory}/lib/pythonXY/site-packages:${PYTHONPATH}
export PYTHONPATH
PATH=${install_directory}/bin:${PATH}

${python} -m pip install ${every_line_content} --prefix ${install_directory} --ignore-installed
--no-index --find-links ${cached_dir}

If users did not specify the cached dir the param "--no-index --find-links ${cached_dir}" will not
be added.

The sequence diagram of runtime environment and dependency management is as follows:

DockerEnvironmentManager
Apache Beam Portability Framework already supports artifact staging that works out of the box
with the Docker environment. We can use the artifact staging service defined in Apache Beam
to transfer the dependencies from the operator to Python SDK harness running in the docker
container.

In general, to support running in docker mode, the following work will be done:

1.​ Build a docker image which integrates Apache Beam Python SDK harness and Flink
Python, which uses boot.py in Flink Python as the entrypoint of container instead of
boot.go in Apache Beam to plugin the operations and coders defined in Flink.

2.​ Build the RetrievalToken file according to user uploaded files. The RetrievalToken is
constructed by creating a ProxyManifest object and serialize it into a json-format string.
The definition of ProxyManifest can be found in beam_artifact_api.proto.

3.​ Improves the boot.py defined in Flink Python to download files using Beam’s
ArtifactService and deploy them inside the docker container.

https://github.com/apache/beam/blob/master/model/job-management/src/main/proto/beam_artifact_api.proto

The structure of DockerEnvironmentManager is as follows:

public class DockerEnvironmentManager implements PythonEnvironmentManager {

 public static DockerEnvironmentManager create(
 PythonDependencyManager dependencyManager,
 String tmpDirectoryBase,
 String dockerImageUrl) {

 }

 public DockerEnvironmentManager(...) {
 registerShutdownHook();
 }

 @Override
 public void cleanup() {
 // perform the clean up work
 removeShutdownHook();
 }

 @Override
 public RunnerApi.Environment createEnvironment() {
 return Environments.createDockerEnvironment(dockerImageUrl);
 }

 @Override
 public String createRetrievalToken() {
 // construct the RetrievalToken according to user uploaded files
 }

 private Thread registerShutdownHook() {
 Thread thread = new Thread(new DeleteTemporaryFilesHook(pythonTmpDirectory));
 Runtime.getRuntime().addShutdownHook(thread);
 return thread;
 }
}

Use Cases
1.​ UDF relies on numpy:

command executed in shell:
echo numpy==1.16.5 > requirements.txt
pip download -d cached_dir -r requirements.txt --no-binary :all:

python code:
t_env.set_python_requirements("requirements.txt", "cached_dir")

2.​ UDF relies on users' other libraries

t_env.add_python_file("/user/pyfile/1.py")
t_env.add_python_file("/user/pyfile/2.py")
directory is also supported
t_env.add_python_file("/user/lib1")
t_env.add_python_file("/user/lib2.zip")
...

3.​ UDF relies on python3.7 but the python on flink cluster is 2.7

command executed in shell:
virtualenv py37 --python=python3 --always-copy
zip -r venv.zip py37

python code:
t_env.add_python_archives("venv.zip", "venv")
t_env.get_config().set_python_executable("venv/py37/bin/python")

4.​ UDF relies on a specific file, data.txt

command executed in shell:
zip data.zip data.txt

python code:
t_env.add_python_archives("data.zip", "data")

in UDF:
with open("data/data.txt", "r") as f:
 ….

5.​ Configure the behaviour of python process

t_env.set_environment_variable("PYTHONUNBUFFERED", "1")

	Flink Python UDF Environment and Dependency Management
	Motivation
	Goals
	Proposed Changes
	Public Interfaces
	add_python_file(self, file_path)
	set_python_requirements(self, requirements_list_file, requirements_cached_dir=None)
	add_python_archive(self, archive_path, extract_name)
	set_environment_variable(self, key, value)
	set_python_executable(self, exec_path)

	New Options of PythonDriver

	Implementation
	Implementation of SDK API
	Implementation of New PythonDriver Options
	Data Structures used in Operator
	Implementation of PythonEnvironmentManager
	ProcessEnvironmentManager
	DockerEnvironmentManager

	Use Cases

