1. Geometric Notation

- **a.** draw. identify, or define the geometry terms:
 - i. point, line, plane, angle, ray, and segment.
 - ii. collinear, coplanar, and bisector.
- b. use and/or interpret shorthand notation for geometric figures.
- c. correctly use geometric shorthand to name and/or interpret: points, lines, planes, angles, rays, segments, circles, triangles, and other polygons
- d. use and/or interpret congruence marks on a diagram.
- e. write a congruence statement relating congruent figures using proper order and notation.

2. Solving linear equations

a. Students will be able to solve linear equations and proportions in one variable.

3. Square root operations

- a. Simplify a square root completely without the use of a calculator.
- b. Estimate the value of a square root expression.
- c. Evaluate or simplify expressions containing square roots.

4. Segments

- a. apply the Segment Addition Postulate to solve for missing lengths or set up equations.
- b. calculate the distance between two points on a graph or given as coordinate points by either using the distance formula or Pythagorean Theorem.
- c. calculate the midpoint of a line segment given the coordinates of the endpoints using the midpoint formula and/or graphically.
- d. determine the coordinates of the endpoint of a segment given the coordinates of its initial endpoint and the midpoint graphically or using the midpoint formula.

5. Angles

- a. classify angle measures as acute, right, obtuse or straight.
- b. use facts about supplementary angles, complementary angles, vertical angles, linear pairs, adjacent angles, and angle bisectors in a multi-step problem to write and solve simple equations for an unknown angle in a figure.
- c. solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems. (Angle Addition Postulate)

6. Proof Fundamentals

- 1. demonstrate a working knowledge of the Algebraic Properties:
 - 1. Addition Property of Equality
 - 2. Subtraction Property of Equality
 - 3. Multiplication Property of Equality
 - 4. Division Property of Equality
 - 5. Distributive Property

- 6. Simplify (Combine like terms)
- 7. Symmetric Property
- 2. Write an algebraic proof using the properties above.
- 3. Write a statement in conditional form (if _____, then _____.)
- 4. Identify the hypothesis and/or conclusion of a conditional statement.
- 5. Determine the truth value of a conditional statement.
- 6. Write the converse of a conditional statement, given the conditional statement.
- 7. Write a biconditional statement given the conditional statement and/or the converse.
- 8. Write a 2-column proof in a logical order with all necessary steps.

7. Angles and parallel lines with transversals

- a. Identify corresponding angles, alternate interior angles, alternate exterior angles, consecutive interior angles.
- b. Use Corresponding Angles Theorem, Consecutive Interior Angles Theorem, Alternate Interior Angles Theorem, Alternate Exterior Angles Theorem.
- c. Use Corresponding Angles Converse, Consecutive Interior Angles Converse, Alternate Interior Angles Converse, Alternate Exterior Angles Converse.

8. Slope of Lines

- a. Find the slope of a line given two points on the line, a table, or a graph of the line.
- b. Identify slope from any modality of a line (slope-intercept form, point-slope form or standard form)
- c. Identify parallel and perpendicular lines from their slopes.

9. Equations of lines

- a. Graph a line given an equation in any form; slope-intercept form, point-slope form or standard form.
- b. Write the equation of a line in slope-intercept form or point-slope form given two points on the line or the graph of the line.
- c. Find the y-intercept and x intercept of a line from a graph or equation.

10. Transformations

- a. Identify a transformation as a translation, rotation, reflection, or dilation.
- b. translate a point or figure given written directions (left 3, up 2) or directions in terms of coordinate points (x-3, y+2)
- c. reflect a point or figure across a horizontal or vertical line.
- d. rotate a point or figure about the origin 90, 180, 270, or 360 degrees in the clockwise or counterclockwise direction
- e. Dilate a point or figure about the origin given the scale factor.
- f. identify and explain why translations, rotation, and reflections create congruent figures while dilations create similar figures.
- g. identify the transformations or transform a figure that has been created by multiple transformations.

11. Properties of triangles

- a. apply the *triangle sum theorem* (know the three interior angles sum to 180°).
- b. given the angle (or side) measures of a triangle, name the side lengths (or angles) in order from smallest to largest using a compound inequality.
- c. determine if three side lengths can form a triangle using the *Triangle Inequality* theorem.
- d. use the *Triangle Inequality* theorem to state all possible lengths for the third side of a triangle using a compound inequality.
- e. classify a triangle by its sides as scalene, isosceles or equilateral.
- f. classify a triangle by its **angles** as acute, right, equiangular or obtuse.
- g. prove a triangle is a right triangle using **slope criteria** for perpendicular lines.
- h. use the *triangle sum theorem*, the definitions of an isosceles, right and equilateral (equiangular) triangles, and your understanding of congruence notation to find missing angles and side lengths in diagrams.
- i. apply the base angles theorem and its converse.

12. Triangle congruence

- a. use the definition of congruence to show that two figures are congruent if and only if corresponding pairs of sides and angles are congruent.
- b. interpret a given congruence statement relating two congruent triangles in order to identify corresponding parts.
- c. apply the SAS, SSS, ASA, AAS or HL postulates/theorems to prove triangles congruent.
- d. demonstrate an understanding that AAA and SSA do NOT prove triangles congruent.
- e. Use CPCTC (Corresponding Parts of Congruent Triangles are Congruent) to prove segments or angles congruent.

13. Similarity

- **a.** use a **similarity statement** to write the pairs of corresponding and congruent angles.
- b. apply the definition of similarity to determine if two polygons are similar.
- **c.** write a **similarity statement** given two similar polygons.
- d. write a **statement of proportionality** given a similarity statement and/or the diagrams of two similar polygons.
- e. determine the scale factor (similarity ratio) that relates two similar polygons.
- f. relate the perimeters of similar polygons (if two polygons are similar, then the ratio of their perimeters is equal to the ratio of their corresponding side lengths).
- g. solve for sides and angles in a polygon given the similarity ratio (scale factor).

14. Special right triangles

a. Use the ratio of sides in a 45-45-90 degree triangle (isosceles right triangle) to find in exact form:

- o missing hypotenuse and other leg given leg
- o missing legs given a hypotenuse
- b. Use the ratio of sides in a 30-60-90 degree triangle to find in exact form:
 - o missing hypotenuse and longer leg given shorter leg
 - o missing shorter leg and hypotenuse given longer leg
 - o missing shorter and longer legs given hypotenuse

15. Pythagorean Theorem

- a. Find the hypotenuse of a right triangle given the lengths of the legs.
- b. Find the length of a leg of a right triangle given the length of the other leg and the length of the hypotenuse.
- c. Use the Converse of the Pythagorean Theorem to classify a triangle as right, acute, or obtuse.

16. Properties/classifying of polygons

- a. determine if a plane figure is a polygon.
- b. use the definitions of convex and concave.
- c. Use the definitions of equiangular, equilateral, and regular polygon.
- d. classify polygons by their popular names for polygons that contain n sides within the range $3 \le n \le 12$. *Note:* The name of an 11 sided polygon is an 11-gon.
- e. apply the *polygon interior angles theorem* (the sum of the measures of the interior angles of a convex n-gon is $(n 2)*180^\circ$) and its corollary.
- f. apply the *polygon exterior angles theorem* (the sum of the measures of the exterior angles of a convex *n*-gon, one angle at each vertex, is 360 degrees) and its corollary.
- g. Classify a quadrilateral as a trapezoid, isosceles trapezoid, or kite.
- h. Use theorems about trapezoids to find segment lengths and angle measures.
 - i. Isosceles Trapezoid Base Angles Theorem
 - ii. Midsegment Theorem
- i. Use the properties of a kite to find missing segment lengths and angle measures.

17. Properties of parallelograms

- a. use the properties of parallelograms to solve for missing segments or angles in parallelograms:
 - i. both pairs of opposite sides are parallel
 - ii. both pairs of opposite sides are congruent.
 - iii. both pairs of opposite angles are congruent.
 - iv. consecutive angles are supplementary
 - v. diagonals bisect each other
- b. Determine if a quadrilateral is a parallelogram:

- i. define a parallelogram as a quadrilateral with both pairs of opposite sides parallel.
- ii. if both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- iii. if both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
- iv. if an angle of a quadrilateral is supplementary to both of its consecutive angles, then the quadrilateral is a parallelogram.
- v. if the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
- vi. if one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.
- c. Determine if a parallelogram can be further classified as a rhombus, rectangle, or square.
- d. Use properties of parallelograms, rectangles, rhombuses, and squares to find missing segments (sides and diagonals) and angle measures.

18. Trigonometry: Right Triangles

- a. Write the sine, cosine, or tangent ratio of sides.
- b. Use a given side length, angle of a right triangle, and the appropriate trigonometric ratios (sin, cos, tan) to solve for missing side lengths.
- c. Use two given side lengths of a right triangle and the appropriate inverse trigonometric ratio (sin-1,cos-1,tan-1) to solve for missing angles.

19. Circumference/Area/Perimeter

- a. calculate the area of triangles, parallelograms, rectangles, rhombi, kites, squares and trapezoids.
- b. calculate the area of composite figures made up of triangles, parallelograms, rectangles, rhombi, kites, squares, trapezoids, and semicircles.
- c. calculate the length of a given arc given the central angle and radius of the circle
- d. find the area of a sector given the central angle and the radius of the circle.
- e. write final answer in either exact or approximate form.

20. Circle Relationships:

- a. identify and describe relationships among inscribed angles, radii, and chords.
- b. identify and define the lines, segments, angles and arcs associated with a circle (chord, radius, diameter, secant line, tangent line, point of tangency, minor arc, major arc, semicircle, inscribed angle).
- c. verify a tangent to a circle.

- 1. if a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.
- 2. in a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent.
- d. build the equation of a tangent line given the center of a circle and a point of tangency
- e. apply theorems related to inscribed angles.
 - 1.if an angle is inscribed in a circle, then its measure is half the measure of its intercepted arc
 - 2. if two inscribed angles of a circle intercept the same arc, then the angles are congruent.

21. Surface area and Volume

- a. Use a net to name a 3d figure or create a net from a diagram of a 3d figure.
- b. Calculate the total surface area of rectangular and triangular prisms, cubes, and right square pyramids.
- c. Calculate the volume of a rectangular or triangular prism.
- d. calculate the volume of a rectangular, square, or triangular pyramid
- e. Calculate the volume of a cylinder, cone, sphere, and hemisphere in exact and approximate form.
- f. Find the missing dimension of a prism, pyramid, cylinder or cone given the volume of the solid and one dimension.

22. Attend to precision:

- a. following directions to express a final answer in simplest, exact, or approximate form.
- b. using appropriate units of measure.
- c. round numbers as directions indicate (to the nearest thousandth, hundredth, tenth, or whole number).