
1

How to make custom weapons for GTFO
Written by Mccad00

In GTFO, almost all content and systems are highly configurable via json files

called Datablocks, which provide the game with stats, behavior, and just general data
for a large variety of systems. In particular, weapons are split into a large number of
datablocks which provide stats, determine behavior, recoil data, and even configure the
appearance of weapons.

Before going any further, it’s important that we understand the hierarchy of
datablocks that set up weapons, and understand what each of these datablocks control.

PlayerOfflineGear: Creates an inventory item by assigning parts and models to a
‘GearCategory’ entry.

GearCategory: Groups together 4 ‘Archetype’ entries and 1 item datablock entry.

Archetype: Provides stats, a recoil datablock entry, and metadata to a weapon.

Item: Determines the inventory slot, controls HUD elements, and what type of weapon
to use.

2

Archetype

At the heart of every weapon in GTFO is the Archetype datablock, which
determines a gun’s statistics and metadata. There is a lot to unpack here and it’s almost
all self explanatory, so I’ll just break down each of the variables and what they control.

"PublicName": The weapon's name in the inventory (eg Assault Rifle)​
"Description": The description in the lobby screen​
​
"FireMode": 0 - Semi, 1 - Burst, 2 - Auto, 3 - SemiBurst (broken)​
"RecoilDataID": The RecoilDatablock entry to use​
"DamageBoosterEffect": Used by boosters to determine what to buff​
"Damage": The weapon's base damage​
​
"DamageFalloff": {​
 "x": The distance at which the damage dropoff begins​
 "y": The distance at which the weapon does minimum damage​
},​
​
"StaggerDamageMulti": Multiplier of the base damage for stagger​
"PrecisionDamageMulti": Multiplier of the base damage for weakspots​
​
"DefaultClipSize": The number of bullets in a magazine​
"DefaultReloadTime": The time in seconds it takes to reload​
"CostOfBullet": Divide this weapon type's “AmmoMaxCap” from the

player datablock by this value to determine the reserve ammo capacity​
"ShotDelay": The time in seconds between each shot of the weapon​
​
"PiercingBullets": True or false, whether the gun pierces​
"PiercingDamageCountLimit": The amount of times a bullet can pierce​
​
"HipFireSpread": The inaccuracy cone's angle when hipfiring​
"AimSpread": The inaccuracy cone's angle when aiming down sights​
​
"EquipTransitionTime": The time in seconds to equip the weapon​
"EquipSequence": See FireSequence and ReloadSequence​
​
"AimTransitionTime": The time in seconds to aim down sights​
"AimSequence": : See FireSequence and ReloadSequence

3

Archetype (Cont.)

"BurstDelay": The delay in seconds between each full burst​
"BurstShotCount": The amount of shots to fire in a burst

​
"ShotgunBulletCount": The amount of pellets to fire​
"ShotgunConeSize": The radius of the shotgun’s cone (Integer)​
"ShotgunBulletSpread": The spread between each pellet (Integer)

​
"SpecialChargetupTime": The time it takes to charge up before firing​
"SpecialCooldownTime": The time it takes to cool down after firing​
"SpecialSemiBurstCountTimeout": Unused or broken

​
"Sentry_StartFireDelay": The time before a sentry starts firing​
"Sentry_RotationSpeed": The speed a sentry can rotate​
"Sentry_DetectionMaxRange": The maximum distance a sentry can target​
"Sentry_DetectionMaxAngle": The maximum angle a sentry can pivot​
"Sentry_FireTowardsTargetInsteadOfForward": Whether or not a sentry

gun leads it’s shots (requires more testing to determine)​
"Sentry_LongRangeThreshold": Unused?​
"Sentry_ShortRangeThreshold": Unused?​
"Sentry_LegacyEnemyDetection": Whether or not to use the new or old

sentrygun targeting behavior​
"Sentry_FireTagOnly": Whether or not to only shoot biotracked enemies​
"Sentry_PrioTag": Whether or not to prioritize biotracked enemies

​
"Sentry_StartFireDelayTagMulti": Delay multi for biotracked enemies​
"Sentry_RotationSpeedTagMulti": Rotation multi for biotracked enemies​
"Sentry_DamageTagMulti": Damage multi for biotracked enemies​
"Sentry_StaggerDamageTagMulti": Stagger multi for biotracked enemies​
"Sentry_CostOfBulletTagMulti": Ammo multi for biotracked enemies​
"Sentry_ShotDelayTagMulti": Firerate multi for biotracked enemies

​
"name": The weapon’s internal name in the files, unused ingame

"internalEnabled": Whether or not this weapon is enabled ingame​
"persistentID": The weapon’s ID for reference in other datablocks

​
Note: Assign a unique persistent ID to your weapon that doesn’t occur anywhere else in
the datablock. Keep track of this ID as you’ll be using it in the GearCategory datablock.

4

GearCategory - A stupid system for dumbassess

​ Perhaps the most baffling datablock involved in custom weapons and gear is the
GearCategory datablock. The GearCategory system is designed to group together 4
archetype datablock entries into one category and assigns them an entry in the Item
Datablock, which is used to assign the weapons behavior on the HUD and a slot in the
inventory to fit into. Let’s take a look at an example.​

"PublicName": "",​ Unused by guns, the ingame name for all other gear​
"Description": "",Unused by guns, the lobby description for all other gear

​
"BaseItem": 108,​ ​ ​ ​ The item datablock entry to reference​
"HUDIcon": "",​ ​ ​ ​ Unused​
"FPSArmPoseName": "",​ ​ ​ Unused​
"ThirdPersonFullbodyMovement": 0,​ Third person animation set:​
​
0 = Rifle​
1 = Pistol​
2 = Melee​
3 = CarryHeavy​
​
"SemiArchetype": 1,​ ​ The 0th archetype in this category​
"BurstArchetype": 3,​ ​ The 1st archetype in this category​
"AutoArchetype": 5,​ ​ The 2nd archetype in this category​
"SemiBurstArchetype": 16,​ The 3rd archetype in this category​
​
Note: These don't actually have any bearing on firemode, you can put

whatever you want into any of these. The number (0-3) of the archetype in

this category is indexed by the PlayerOffline gearjson.​
​
"PartAlignPriority": [], Determines which parts align to eachother.​
"name": "Rifle",​ ​ Internal name, unused​
"internalEnabled": true, whether or not this category is enabled ingame​
"persistentID": 1​ This category's ID for reference in other datablocks

Once again, assign a unique persistent ID to your gear category to prevent conflicts with
existing game data. Keep track of this persistent ID as you’ll need to reference it in the
PlayerOffline gear datablock

5

GearCategoryDataBlock: Part align priority

​ Sometimes, multiple parts in a GearJson will share the same aligns as each
other, which will result in one of the parts defaulting to have that align. In order to control
which parts get the align in cases like this, we need to edit the PartAlignPriority in the
GearCategoryDataBlock. The GearCategory which is linked to your weapon via the
‘Category’ component type will determine which GearCategory you need to modify for
this. Let’s look at the Magnum’s part align priority to see how it works:

"PartAlignPriority": [​
{​
 "AlignType": 7,​
 "PartPrio": [​
 12​
]​
},​
{​
 "AlignType": 8,​
 "PartPrio": [​
 12​
]​
}​
],

"AlignType": This corresponds to the same Enum as aligns in the gear datablocks.
"PartPrio": A list of gear component types which determines the hierarchy of which

parts to assign aligns to.

6

PlayerOfflineGear

​ In GTFO, almost every single piece of equipment is assembled programmatically
in order to get more mileage out of the limited number of assets they have. Weapons,
tools, and even some consumables are put together using this same system. For the
sake of simplicity, I’ll be referring to these assembled items as ‘Gear’. Every assembled
Gear item in GTFO is set up in the PlayerOfflineGearDataBlock via a string called
GearJson.

Pictured: An exploded view of a typical GTFO weapon, using the Gear system

7

GearJson formatting

To get started understanding the format of GearJson, let’s take a look at the GearJson
string for the Pistol:

"GearJSON":

"{\"Ver\":1,\"Name\":\"Shelling S49\",

\"Packet\":{\"Comps\":{\"Length\":16,

\"a\":{\"c\":2,\"v\":8},

\"b\":{\"c\":3,\"v\":108},

\"c\":{\"c\":4,\"v\":8},

\"d\":{\"c\":5,\"v\":1},

\"e\":{\"c\":6,\"v\":1},

\"f\":{\"c\":7,\"v\":1},

\"g\":{\"c\":8,\"v\":16},

\"h\":{\"c\":9,\"v\":15},

\"i\":{\"c\":10,\"v\":27},

\"j\":{\"c\":11,\"v\":27},

\"k\":{\"c\":12,\"v\":38},

\"l\":{\"c\":16,\"v\":1001},

\"m\":{\"c\":19,\"v\":1002},

\"n\":{\"c\":23,\"v\":8},

\"o\":{\"c\":25,\"v\":3}},

\"MatTrans\":{\"tDecalA\":{\"position\":{\"x\":-0.098,\"y\":-0.07},\"

scale\":0.05},\"tDecalB\":{\"position\":{\"x\":-0.098,\"y\":-0.07},\"

scale\":0.04},\"tPattern\":{\"position\":{\"x\":-0.09,\"y\":-0.03},\"

angle\":-90.0,\"scale\":0.1}},\"publicName\":{\"data\":\"Shelling

S49\"}}}",

I’ve taken the liberty here to add line breaks into this string for the sake of
demonstration, but please note that in your datablock, this entire string will be on a
single line. The entire end of this string, the section labeled “MatTrans” is unused by the
game, so to further simplify, I’ll break down the GearJson into its three main building
blocks

8

"{\"Ver\":1,\"Name\":\"Shelling S49\",
This line assigns the GearJson a ‘descriptive name’, which is displayed in your inventory and in
the lobby screen.

\"Packet\":{\"Comps\":{\"Length\":16,
This line tells the game how many gear components your part contains. If this number doesn’t
match the actual number of gear components, the game won’t be able to read the GearJson
string correctly.

\"a\":{\"c\":2,\"v\":8},
This line defines a gear component to add to our GearJson, which is broken up into 3 values:

\"a\" - The index, in alphabetical order, of this gear component. Notice in our example that
every component starts with a unique letter identifier.

\"c\":2 - The component type, such as FrontPart, ReceiverPart, or StockPart. In this
component, type is ‘2’ which corresponds to GearCategory. If you attempt to use the same
component type on multiple components, only one of them will load.

"V\":8 - The component value. This tells the game which component to load for a given type.
In this component, since the type was GearCategory, this will load the GearCategory with
persistentID 8.

You can have as many of these gear components as you want in any given gearJson,
provided you use correct syntax. Because of the clusterfuck nature of this string, I highly advise
against writing any of these from scratch, but rather copy pasting an existing GearJson string
from vanilla, and editing the values and syntax to suit your needs.

9

Gear Component Types

Note: Unused/Unusable component types are omitted.

1 FireMode Value between 0 and 3, tells bulletweapon items which Archetype to
load in the GearCategory datablock

2 Category PersistentID of the GearCategory to load

3 BaseItem PersistentID of the ItemDatablock entry to load.

4 ItemFPSSettings PersistentID of the ItemFPS to load. Used for First Person positioning

5 AudioSetting PersistentID of the WeaponAudio to load

6 MuzzleFlash PersistentID of the WeaponMuzzleFlash to load

7 ShellCasing PersistentID of the WeaponShellCasing to load

12 FrontPart The front, barrel portion of a weapon

16 ReceiverPart The receiver of a weapon

19 StockPart The grip or stock of a weapon

21 SightPart The sight of a weapon; some front parts have this function built in

23 MagPart The magazine of a weapon. Not all parts support this

25 FlashlightPart The flashlight of a weapon

27 ToolMainPart The base part which the rest of the tool parts align to

30 ToolGripPart The grip or stock of a tool; this is interchangeable with StockPart

33 ToolDeliveryPart Typically the business end of a tool

37 ToolPayloadPart Varies widely between tools

40 ToolTargetingPart The ‘targeting module’ placed on some tools

42 ToolScreenPart The display screen, only functional if the gear uses the correct baseitem

44 MeleeHeadPart The head of the hammer

46 MeleeNeckPart The part that connects the head to the handle of a hammer

48 MeleeHandlePart The handle of a hammer

50 MeleePommelPart The base of a hammer handle

​ Note: Even though the devs typically only use parts where it’s appropriate, you
can actually use any of these parts on any piece of gear. Tool parts are usable on guns.

10

Gear Datablocks: General

The gear datablocks are used to assign behavior, animations, models, and aligns

to gear parts, for use in GearJson. The most simple, and arguably the most important
part of these datablocks is ‘General’, which tells the game what model and children to
load, and what hand animations to use.
"General": {​
 "Model":

"Assets/AssetPrefabs/Items/Gear/Parts/Fronts/Front_Short_Shotgun_2.prefab",​
 "Children": [],​
 "GearCategoryFilter": 0,​
 "LeftHandGripAnim": "Short_Shotgun_2_Player_Idle",​
 "RightHandGripAnim": "Short_Shotgun_2_Player_Idle",​
 "AssetBundle": 20,​
 "BundleShard": 3​
},

"Model": The path of the part prefab to load
"Children": A list of child prefabs to load
"GearCategoryFilter": 0, Unused
"LeftHandGripAnim": The animation clip to play for the player’s arms on layer 5
"RightHandGripAnim": The animation clip to play for the player’s arms on layer 6
"AssetBundle": 20, The asset bundle to load the prefabs from.
"BundleShard": 3 The asset shard to load the prefabs from.

Generally when copying prefabs into this datablock, it’s important to make sure you
assign the AssetBundle and BundleShard to the same ones as the prefab you copied.

11

Gear Datablocks: aligns

Gear parts are attached to each other using aligns, which are empty Game
Objects placed onto gear parts which aligned parts are parented to. In order to change
the usage of these aligns, you need to edit, or make a copy of the gear datablock entry
for the desired part. Let’s look at the aligns of Front_UZI_1:
"Aligns": [​
 {​
 "AlignType": 0,​
 "AlignName": "Receiver_M"​
 },​
 {​
 "AlignType": 1,​
 "AlignName": "Front_SE"​
 },​
 {​
 "AlignType": 2,​
 "AlignName": "Front_Mag"​
 },​
 {​
 "AlignType": 5,​
 "AlignName": "Front_Flash"​
 },​
 {​
 "AlignType": 7,​
 "AlignName": "LeftHand"​
 },​
 {​
 "AlignType": 6,​
 "AlignName": "Sight_Align"​
 },​
 {​
 "AlignType": 4,​
 "AlignName": "Receiver_Sight"​
 }​
],

"AlignType": 0, The Type of the align, which determines which part attaches to this

"AlignName": "Receiver_M" The name of the game object which this align attaches
parts to. Unfortunately, we can’t add or modify these game objects in this datablock, but
we can tell the game what parts to place onto these aligns.

12

Gear Datablocks: align types

0 Muzzle Weapon’s muzzle flash

1 ShellEject Weapon’s ejection port

2 Magazine Corresponds to the MagPart gear component

4 Sight Corresponds to the SightPart gear component

5 Flashlight Corresponds to the FlashlightPart gear component

6 SightLook The aim down sights camera if no sight part is present

7 LeftHand The player’s left hand

8 RightHand The player’s right hand

9 Receiver Corresponds to the ReceiverPart gear component

10 Front Corresponds to the FrontPart gear component

12 ToolGrip Corresponds to the ToolGripPart gear component

13 ToolDelivery Corresponds to the ToolDeliveryPart gear component

14 ToolPayload Corresponds to the ToolPayloadPart gear component

15 ToolTargeting Corresponds to the ToolTargetingPart gear component

16 ToolScreen Corresponds to the ToolScreenPart gear component

17 ToolDetection unknown

18 ToolScanning unknown

20 MeleeHead Corresponds to the MeleeHeadPart gear component

40 RotationPivot Presumably used by sentry guns to position the contained weapon parts

41 GroundPlacement Presumably used to position the base of a sentry gun

13

Gear Datablocks: FireSequence and ReloadSequence

​
​ To handle animations, the GearDatablocks lists of WeaponAnimSequenceItems,
which provide timing, behavior, and a string of the animation to play under a given
context. Let’s look at the Short Shotgun reload sequence:
"ReloadSequence": [​
 {​
 "TriggerTime": 0.0,​
 "Type": 0,​
 "StringData": "ShotgunReload_bump"​
 },​
 {​
 "TriggerTime": 0.0,​
 "Type": 5,​
 "StringData": "carbine_reload_3_foley"​
 },​
 {​
 "TriggerTime": 0.95,​
 "Type": 5,​
 "StringData": "shotgun_reload_1_shell_in"​
 },​
 {​
 "TriggerTime": 1.0,​
 "Type": 6​
 },​
 {​
 "TriggerTime": 1.5,​
 "Type": 5,​
 "StringData": "shotgun_reload_2_cock"​
 },​
 {​
 "TriggerTime": 2.0,​
 "Type": 7​
 }​
],

"TriggerTime": 0.0, The delay, from the start of the sequence, to play the clip.

"Type": 5, The type, which determines the behavior of the animation.

"StringData": "shotgun_reload_1_shell_in" The string of the animation clip.

Note: This formatting and behavior is consistent between reload and firing sequence.

14

Gear Datablocks: Animation Types

0 WeaponMovementAnim Animate the first person weapon holder

1 FrontPartAnim Animate the weapon’s front part

2 LeftHandAnim Animate the FPS arms (animation layer 5)

3 LeftHandMagAnim Animate the FPS arms using the magazine’s animation.
No animation clip input required

4 ReceiverAnim Animate the weapon’s receiver part

5 Sound Play a sound event using the animation string as a sound event ID

6 DoUpdateAmmo Reload the weapon’s clip.
No animation clip input required

7 Empty Don’t do anything. Typically used at the very end of a sequence
No animation clip input required

8 StockAnim Animate the weapon’s stock part

9 RightHandAnim Animate the FPS arms (animation layer 6)

15

GearPartCustomization: Modifying gear part transforms

​ In the vanilla game, it’s possible to use whatever parts you want on any gun, and
to choose what aligns those parts snap to, but it is impossible to manually adjust the
position, scale, or rotation of parts. To get around this limitation, we can use my
‘GearPartCustomization’ plugin, which allows us to get far more milage out of the vanilla
weapon parts.
​ With the GearPartCustomization plugin installed, we’ll get a new file in our
custom folder titled GearPartTransform.json. Let’s take a look at the default settings
which generated in our file. Because the datablock is large, I’ll break it down into
individual properties.

"OfflineID": The persistentID of the PlayerOfflineGear entry to customize
"Name": The name of the customization settings. For organizational purposes only
"InternalEnabled": Determines whether or not to load this customization setting
"Parts": The list of parts on the gear item which we want to customize. Parts contains
the following properties:

"PartHolderObject": The Property within the GearPartHolder to modify
"PartType": The Component Type to modify. Only used if PartHolderObject is unset.
"Enabled": Determines whether or not to enable or disable this part’s Game Object
"PartTransform": Modify the position, scale, and rotation of our desired part.
"Children": The list of children on this part to modify. Many gear parts contain children
for things like additional models, aligns, and animations. If you don’t want to customize
the model’s children, leave this list empty. Children contains the following properties:

"ChildName": The name of the child object to modify.
"Enabled": Determines whether or not to enable or disable this child’s Game Object
"PartTransform": Modify the position, scale, and rotation of the child part.
"Children": The list of children on this child object which we’d like to modify. Many
parts have nested children multiple levels deep, so you need to modify the children of
children to access those.

​ This might seem pretty daunting, as you’ll be editing a potentially very large
amount of data, but thanks to Unity Explorer, this process is heavily simplified and
relatively easy.

https://gtfo.thunderstore.io/package/Frog/GearPartCustomization/

16

When we first boot up the game
with unity explorer, we’ll see
something like this. For now, you
can just press F7 to close the unity
explorer menu and start the game.
Pick a level, pick the gear you’d like
to customize, and drop in.

When we get into the level, open up
Unity Explorer again by pressing
F7, and go to the object explorer
window. Select ‘Object Search’, set
the scope of the search to
UnityObject, the class filter to
Gear.GearPartHolder, and click
search.
In our search results, we’ll find the
gear part holder of everything we
have equipped in our inventory. To
continue, click on the
GearPartHolder of the gear you
want to customize. I’ll be modifying
the Double Tap Rifle

With the gear part holder open, we’ll
be able to see all of the properties
and fields of the gear part holder.
We can also click Inspect
GameObject to view the Game
Object itself, where we can move,
rotate, and scale the gun to make it
more easy to view while editing.

While there are tons of fields here,
very few of them are actually
meaningful to us. Let’s inspect
GearPartHolder.FrontPart:

17

We can now see the front part’s
position, local position, rotation, and
scale, as well as the attached child
objects. I highly recommend that
you don’t use the sliders, as at the
scale of this game, even minute
adjustments to the sliders can move
parts a tremendous distance.
Note: Don’t change the position,
change the local position.

When we change these values here,
we’ll see that our weapon is
modified in game as well. Once
you’re happy with how it looks, you
can input these values into your
GearPartTransform in the datablock.

18

ItemFPSSettings - First person weapon positioning

​ In order to modify the position of weapons in the first person camera, you need to
either assign an existing ItemFPS (There are plenty of good ones in vanilla) or write a
custom one. Let’s look at an example of the ItemFPSSettings datablock:

"localPosHip": The position of the weapon while hipfiring​
"localRotHip":​ The angle of the weapon while hipfiring​
"localPosRelaxed": The position of the weapon while in the idle animation​
"localRotRelaxed": The rotation of the weapon while in the idle animation​
"localPosZoom": The position of the weapon when aiming down sights​
"localRotZoom": The rotation of the weapon when aiming down sights​
​
"bodyOffsetLocal": The root position; other positions are offset from this​
"bodyRotationOffsetLocal": The root rotation​
​
"ItemCameraFOVDefault": Requires further research​
"ItemCameraFOVZoom": ​
"LookCameraFOVZoom": ​
​
"canAim": Whether or not this weapon can be aimed with​
"onlyStartAimOnPressed": Unused?​
"canRelax": Whether or not the weapon's idle animation is used​
"customDelayUntilRelax": The time until the idle animation begins​
"allowRotToAimPos": Can the weapon can rotate into the zoom position​
"rotToAimPosMinDis": Too confusing for my tiny brain to comprehend​
"transitionToAim": 0 = ​ quick, 1 = slow
​
"idleAnimData": The animation and speed for standing still​
"walkAnimData": The animation and speed for walking​
"runAnimData": The animation and speed for running

​
"DofDefault": The depth of field settings (camera blur) for hipfiring​
"DofAim": The depth of field settings (camera blur) for aiming down sights​
​
"name": Internal name of these settings, unused ingame​
"internalEnabled": Whether or not this setting is enabled ingame​
"persistentID": The unique ID of this itemFPS setting

