
Relationships Between Categories 
  
So far we’ve been looking at individual categories as if they were isolated galaxies – interesting 
structures inside, no connections between them. In this chapter we will investigate how 
categories relate to each other, so that we can actually have a category of all categories, a thing 
that is impossible for sets, for instance. 
  
To build a category of categories, we need to introduce functions between categories, their 
composition, and identity functions on categories (this one is the easiest). 
  
Let’s start with two predecessors of categories – monoids and graphs. 
  
In Grph, a category of all graphs, functions consist of mapping nodes and mapping edges, so 
that sources map to sources and targets map to targets. 
  
In Mon, a category of all monoids, functions (that is, elements of monoids) map so that 
composition and neutral elements are preserved. 
  
Since a category is both a graph and a generalization of monoid, it would be natural to define a 
function from category A to category B as a couple of mappings, objects to objects and 
functions to functions, so that identities and compositions are preserved. 
  

Functor 
  
Definition. Given two categories, A and B, a functor F: A → B consists of the following 
components: 
  
·      F0 that maps objects of A to objects of B; 
·      F1 that maps functions of A to functions of B 
  
Since these two components, F0 and F1, act on collections of totally different nature, we can 
safely (and for simplicity) omit the subscripts and denote both with just one letter F. This is what 
I plan to do further on. Also, application of functor, according to a tradition of certain 
programming languages, will be denoted not as F(X) but as F[X]; you will see that, although 
unusual, it does make expressions more readable. 
  
These two mappings should have the following two properties: 
  



·   ​ F[idX] = idF[X] 

·   ​ F[f∘g] = F[f]∘F[g] 
  
Traditionally, the definition of functor also requires that for a function f:X → Y 
we should have F[f]: F[X] → F[Y]. But this actually just follows from our definition above: F[f] = 
F[f∘idX] = F[f]∘idF[X] — this means that idF[X] can be followed by F[f], which is possible only if the 
domain of F[f] is F[X]. 
  
You may have heard the term “functor” in a variety of confusing contexts. Some programming 
books use the word to denote any functions that acts on other functions. This is wrong. A 
mapping from one function to another is called an operator in mathematics (e.g. derivative); a 
mapping from a function to a scalar value is called a functional (e.g. an integral, or map/reduce). 
  
The simplest example of a functor is an identity functor. Map everything to itself, and you have a 
functor, actually, an endofunctor, since its domain and codomain are equal. 
  
Before showing examples, let’s wrap it up with showing that we have a category. A category of 
categories, called Cat. Categories are objects of Cat, and functors are functions. Composition of 
functors is obvious: apply one, then apply another. It is associative just because for any X we 
have (F∘G∘H)[X] = F[G[H[X]]]. 
  
Note that Cat is so huge that it contains itself as an object. It’s okay, we are not dealing with 
sets, we do not have set-theoretic axioms, specifically, comprehension axiom that would allow 
us to build a category of all barbers that don’t shave themselves. 

Examples of Functors 
  
Example 1. List[+T] 
This is the most popular functor in programming. We will not discuss its features, just look at it 
from a categorical point of view. In an unspecified programming language (as long as it is Scala) 
we have its types as objects of the category, and single-parameter functions as functions of the 
category. Now, given a type T, we can produce a type List[T]; so we have a functor defined on 
objects. How about functions, given f: T → U, what would serve as List[f]: List[T] → List[U]? We 
don’t have much of a choice; it is List.map function. List.map(f) is the function from List[T] to List[U] 
that we were looking for. 
 
If we limit ourselves to the category where only subtypings are allowed as functions, we don’t 
have to introduce map function; the language can provide us with a feature that from isSubtype:T 
→U we have isSubtype:List[T] →List[U]. This feature, in Scala, is denoted by having the + sign, 
like in the title of this example. More on this later. 
  
(Counter-)example 2. Set[T] 



In Scala, as well as in Java, and probably in some other languages, Set[T] is a parameterized 
type impersonating “a set of values of type T”. But mapping just types is not enough; we need to 
map functions, and here we have a problem. 
The obvious candidate is the traditional Set[T].map(f:T=>U), which creates a new set out of the 
values of f on elements of the original set, efficiently building an image. This is not very efficient, 
since the new set should be materialized right away. If it remained virtual (lazy), like in the case 
of list, we would have for every call of contains method scan through the whole original set and 
compare the result of function application with the value provided. 
Another solution exists; but it requires some new notions, to be introduced later on. 
  
Example 3. A functor from 1 
1 is a category consisting of one object and its identity function. How does a functor from 1 to a 
category C? We select an object in C, that’s all that we need. For any object x there’s a functor 
x: 1 → C. 
  
Example 4. A functor from 2 to Set 
If you remember, 2 is a category consisting of two objects, 0 and 1, a function, let’s call it 01, 
from 0 to 1 (and a couple of identity functions). Set is a category of sets. To define a functor F 
from 2 to Set, we will need three items: a set F[0], a set F[1] and a function F[01] from F[0] to F[1]. 

 
For artistic reasons, let’s rename F[0] to F0, F[1] to F1, and F[01] to F01. We see that every functor 
from 2 to Set is just a function F01: F0→F1 in sets; and every function f:A→B can be thought of as 
a functor from 2 to Set where F0=A, F1=B F01=f. 
  
Actually, the fact that we are dealing with category Set is irrelevant. The same argument would 
work for any category C. 
  
Example 5. A functor from Set to  2 
Now let’s try to figure out what we can have here. Two obvious functors are constants: map all 
objects of Set to object 0 of 2, and all functions to id0, and similarly, map all objects of Set to 
object 1 of 2, and all functions to id1. 
  
Except these two obvious functors, there must be others that cover both 0 and 1. Note that 
empty set ∅ is a subset of every set, so if a functor F maps it to 1, every other set should map to 
1. Meaning, we will have the constant functor we talked about above. Similarly with singletons, 
which are terminal objects, either they map to 1 or every set maps to 0. We have mappings for ∅ 
and singletons. Every nonempty set S has an element, and so there is a function from singleton 
to S; so S should also map to 1. As you see, all nonempty sets should map to 1. We have 
exactly three functors from Set to 2. 
  
Example 6. Product with an object 
Given a category C that has products, and an object A in C, we can produce a functor that 
consists of multiplying by A, that is, A×- : C → C. The functor maps each object X to A×X, and for 



a function f:X→Y it provides A×f: A×X → A×Y; you have probably figured out already how it does 
it. 
  
Example 7. Set Exponentiation 
In the category of sets, given a set A, we can always build, for any set X, a set XA, which 
consists of functions from A to X. This is a functor, -A : Set → Set. 
  
Example 8. Monoids 
A monoid can be represented as a category with one object. So, if we have two monoids, a 
monoidal function from one to another is the same as a functor: we preserve multiplication and 
identity. 
  
Example 9. Partial Order 
A partial order is also a category; and a functor between two such categories is a partial order 
function that preserves order (it’s called monotone). 
  

Building New Categories 
  
Now that we know that categories form a category, we can try to figure out how to build unions, 
products, pullbacks, equalizers in Cat, and whether it has initial and terminal objects. Let’s walk 
through all these. 

Initial Category 
  
This is a category that has a unique functor to any (other) category. Of course such a category 
cannot have objects; if it did, we could apply constant functor to it, for each object in a target 
category, and have more than one of such functors, generally speaking. So the only choice is 
the empty category, 0. Feel free to define a functor from 0 to any category C. 

Terminal Category 
  
For a terminal category each category C has a unique functor ending in it. If we take category 1, 
for each category C there can be exactly one functor C→1. So we have a terminal object in Cat. 
  

Product of Two Categories 
  
This structure can be built similar to what we have in Set. Given two categories, C and D, take 
as objects of C×D all pairs of objects (x,y) where x is an object of C and y is an object of D. The 



very fact that math allows us to form such pairs is beyond the scope of this text, of course; this 
can be done internally if we are within a certain domain. As functions, take all pairs of functions 
(f,g) where f is a function in C and g is a function in D. composition is defined component-wise, 
so 
(f1,g1) ∘(f2,g2)=(f1∘f2,g1∘g2). 
  
To see that we have a category, we provide identities id(X,Y) = (idX,idY) , and verify that they are 
neutral re: composition; and that composition is associative. 
  
Does this category satisfy the universal property in Cat? It can be proved component-wise that it 
does. 
  

Sum of Two Categories 
  
Given two categories, C and D, and assuming that we can build a category consisting of objects 
of C and objects of D, and functions from these two categories, we get a new category, C+D. We 
already saw examples of this: the sum of n instances of 1, that is, 1+1+…+1, is a discrete 
category consisting of n objects and only identity functions. 
  

Equalizer? Pullback? Pushout? 
  
Generally speaking, these constructions are not available in Cat, for many reasons, one of them 
being that equality for objects is not defined in categories, only isomorphisms; so we would have 
to define everything up to an isomorphism, which gets us into higher-order categories. So let’s 
not count on these. 
  

Reversing the Arrows 
  
Remember that functions in a category have, in general, nothing to do with something that takes 
an argument and returns a value; they are just formal generalizations. So, given a category C, 
nothing can stop us from producing another category out of it, by reversing the direction of all 
functions. 
  

 Definition. Given a category C, its opposite, or dual, Cop, is a category with the same object 
and the same functions, but the direction of functions reverted. Note that having any knowledge 
about function makes no sense here; these are just symbols. Composition is defined in the 



opposite direction too, so (f∘g)op = gop∘fop. The fact that it is a category can be easily proven (you 
can do it as an exercise). 
  
For some categories opposite is the same as the original category (e.g. 1, 2, 3…); even Rel, a 
category of sets and their binary relationships, is symmetrical relative to this operation; for 

others it is not trivial at all. For instance, Setop is the category of Complete Atomic Boolean 
Algebras.  
 
Omitting the exact definition of this, we can intuitively look into it like this: given a set, we have 
its characteristic function, a predicate that is true only on members of the set. Now, if we have a 
function f:X→Y on sets, and for set X we have a predicate pX, and for set Y we have a predicate 
pY, we can map pY to a predicate on X by defining f(pY)(x) = pY(f(x)).  This way, for each map 
between sets we have a map between predicates. We can view sets of such predicates for each 
given set, as objects of the category; and we, under certain assumptions, may think of such 
predicates as being the same as the underlying sets. 
  
In programming languages this operation is equivalent to defining sets via its ‘contains’ 
predicate. Of course this is not enough; we also need to make sure that every such predicate 
can be represented as a disjunction of atomic predicates, which correspond to elements of the 
set.  
 

Contravariant Functor 
  
Frequently the functors we’ve been discussing so far are called covariant functors, due to their 
actions on functions that map domain to domain and codomain to codomain. Another kind of 
functor, the one that maps domain of a function to codomain, and codomain to domain, is called 
contravariant. 
  
Strictly speaking, we do not need a special term, because a contravariant functor can be always 

thought of as a (covariant) functor Cop
→D (or C→Dop). But since variance plays an important 

role in computer science, we have to spend some time discussing it. 
  
Example 1. Map[_,T] 
If, in Scala, we fix the second argument of the parameterized type Map, we have this feature that 
for a function f:X→Y, we can produce a function Map[Y,T]→Map[X,T]. This mapping preserves 
identities and composition; so we have a contravariant functor. In Scala, contravariance is 
denoted using minus: Map[-X,+Y] is the signature of this type. 



Variance in Programming Languages 
Usually, in languages allowing subtyping (e.g. in Scala) parameterized classes, if they happen to 
be functors, get their variance marker not because they behave covariantly or contravariantly on 
arbitrary functions, but only on inclusions (“subtyping”) of types into other types. So that, e.g., if 
A<:B and X<:Y (this is a notation for the compiler’s ability of subtype one into another), we have 
Map[B,X]<:Map[A,X] and Map[A,X]<:Map[A,Y]. We are obviously dealing with a category where 
types are objects, and the relationships of subtyping are functions. This is a partial order, so 
things are easier than with generic functions. 
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