PERFORMANCE ÉNERGÉTIQUE DES PRODUITS

Cycle1: Conversions énergie électrique/mécanique

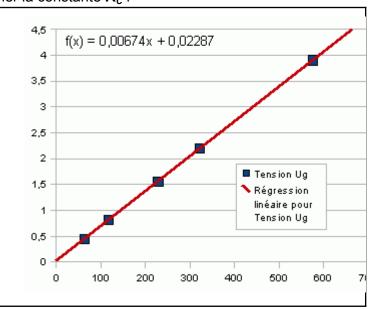
Annexe Cours 1.1 - Caractéristiques MCC

Source: http://www.monbricabrac.ovh/TheoMot.php#mozTocId321962

- 1. Pour commencer, un peu de théorie
 - 1. Fonctionnement à vide (couple sur l'arbre CA=0)
 - 2. Fonctionnement en charge (couple sur l'arbre 0<CA<CB)
- 2. Validation du modèle sur un moteur réel
 - 1. Mesures en génératrice :
 - 2. Mesures alimenté à vide :
- 3. Caractérisation complète de ce moteur
 - 1. Et les puissances ?
- 4. Exploitation des fiches de caractéristiques des fabricants

Mesures en génératrice :

Le moteur n'est pas alimenté. Il est entraîné en rotation par un autre moteur (en l'occurrence une mini-perceuse) et un voltmètre mesure la tension développée aux bornes. Le voltmètre ne prélevant aucun courant, la résistance série R_s du moteur n'a aucune influence, et on mesure directement la f.e.m. U_G , prédite par l'équation (2). Le relevé à plusieurs vitesses d'entraînement (mesurées à l'aide d'un stroboscope) permet de vérifier la proportionnalité de U_G et ω et de déterminer la constante K_C .


Le graphe ci-contre représente le relevé de $_{\mathfrak{F}}$ (axe vertical, en V) en fonction de $\boldsymbol{\omega}$ (axe prizontal, en rad/s).

Les 5 points représentent les relevés. La ligne rouge représente la droite de ression.

La proportionnalité est quasi parfaite.

Le coefficient de la droite de régression onne directement la constante K_c , pente de la oite.

Ici,
$$K_c = 0.0067 \text{ V.s/rad} = 0.0067 \text{ N.m/A}$$

Dans les mêmes conditions, en remplaçant le voltmètre aux bornes du moteur par un ampèremètre, le moteur se trouve cette fois en court-circuit.

L'ampèremètre mesure $I = U_G/R_s$, ce qui permet de remonter à la valeur de R_s .

Le relevé donne I = 0.11 A pour $\omega = 551$ rad/s (5260 tr/mn), soit $U_G = 3.71$ V. On trouve $R_S = 34 \Omega$.

01/09/24 Nom prénom : JLT-1sti2d-EE.cours1.1 1/1