
Chapter 2.3: Robust Programming

Introduction

Robust programming ensures that software works reliably, even in unexpected situations. It
involves techniques like input validation, error handling, and secure authentication. This
chapter explains defensive design, validation, verification, authentication, maintainability, and
testing to build strong, reliable programs.

Video Link: 2.3 Defensive design considerations 1

2.3.1 Defensive Design

What Is Defensive Design?

Defensive design anticipates errors or problems before they happen. It ensures the program
remains functional and secure under unexpected conditions.

Video Link: 2.3 Defensive design considerations 2

Defensive Design in Action

Input Validation: Checks if user inputs are correct before using them.​
Example:​
python​
Copy code​
age = input("Enter your age: ")

if age.isdigit() and 0 <= int(age) <= 120:

 print("Valid age.")

else:

 print("Invalid age.")

●​

Error Handling: Prevents crashes when errors occur.​
Example:​
python​
Copy code​
try:

 number = int(input("Enter a number: "))

 print(f"You entered {number}.")

except ValueError:

 print("Please enter a valid number.")

●​

Security Features: Filters dangerous inputs to prevent attacks like SQL injection.​
Example:​
python​
Copy code​
user_input = input("Enter your username: ")

sanitized_input = user_input.replace("'", "")

print(f"Welcome, {sanitized_input}")

●​

2.3.2 Validation

What Is Validation?

Validation checks if input meets specific criteria before the program uses it.

Video Link: 2.3 Suitable test data

Validation Techniques

●​ Range Check: Ensures values fall within a valid range.
●​ Type Check: Confirms data types (e.g., numbers, not letters).
●​ Length Check: Verifies input length is appropriate.
●​ Presence Check: Ensures required fields are not empty.

Example:

python

Copy code

password = input("Enter your password: ")

if password.isspace() or password == "":

 print("Password cannot be empty or all spaces.")

2.3.3 Verification

What Is Verification?

Verification ensures data entered matches the original source.

Video Link: 2.3 Making algorithms more robust

Verification Techniques

Double Entry: The user enters data twice to confirm accuracy.​
Example:​
python​
Copy code​
email = input("Enter your email: ")

confirm_email = input("Re-enter your email: ")

if email == confirm_email:

 print("Emails match.")

else:

 print("Emails do not match.")

●​
●​ Checksums: A calculated "digital fingerprint" confirms data integrity.

2.3.4 Authentication

What Is Authentication?

Authentication verifies that users are authorized to access the system.

Video Link: 2.3 Defensive design considerations 1

Techniques

Username and Password: Ensures secure access.​
Example:​
python​
Copy code​
stored_password = "secure123"

entered_password = input("Enter your password: ")

if entered_password == stored_password:

 print("Access granted.")

else:

 print("Access denied.")

●​
●​ Two-Factor Authentication (2FA): Combines passwords with phone codes.
●​ Biometric Authentication: Uses fingerprints or facial recognition.

Security Practices

Password Hashing: Encodes passwords securely.​
Example:​
python​
Copy code​
import hashlib

password = "secure123"

hashed_password = hashlib.sha256(password.encode()).hexdigest()

print(hashed_password)

●​

Limit Login Attempts: Prevents repeated login failures.​
Example:​
python​
Copy code​
attempts = 0

while attempts < 3:

 password = input("Enter your password: ")

 if password == "secure123":

 print("Access granted.")

 break

 else:

 attempts += 1

 print("Incorrect password.")

if attempts == 3:

 print("Account locked.")

●​

2.3.5 Maintainability

What Is Maintainability?

Maintainable code is easy to understand, update, and debug.

Video Link: 2.3 Maintainability

Techniques

Comments: Explain what the code does.​
Example:​
python​
Copy code​
Calculate the area of a rectangle

area = width * height

●​
●​ Naming Conventions: Use clear and meaningful variable names.
●​ Indentation: Makes code readable and organized.

Modular Design: Break the program into smaller, reusable functions.​
Example:​
python​
Copy code​
def calculate_area(width, height):

 return width * height

●​

2.3.6 Testing

What Is Testing?

Testing ensures the program works as intended under different conditions.

Video Link: 2.3 The purpose & types of testing

Types of Test Data

●​ Normal Data: Expected inputs.
●​ Boundary Data: Values on the edge of valid ranges.
●​ Invalid Data: Incorrect inputs the program should reject.
●​ Extreme Data: Inputs that push the system to its limits.

Example:

python

Copy code

age = input("Enter your age: ")

if age.isdigit() and 0 <= int(age) <= 120:

 print("Valid age.")

else:

 print("Invalid age.")

Trace Tables

Trace tables track variable changes during program execution.

Example:

python

Copy code

total = 0

for i in range(1, 4):

 total += i

print(total)

Trace Table:

Ste
p

i Tota
l

1 1 1

2 2 3

3 3 6

Summary

Robust programming ensures software reliability through defensive design, validation,
verification, and authentication. Writing maintainable code and thorough testing improve
program quality and user trust.

	Chapter 2.3: Robust Programming
	Introduction

	2.3.1 Defensive Design
	What Is Defensive Design?
	Defensive Design in Action

	2.3.2 Validation
	What Is Validation?
	Validation Techniques

	2.3.3 Verification
	What Is Verification?
	Verification Techniques

	2.3.4 Authentication
	What Is Authentication?
	Techniques
	Security Practices

	2.3.5 Maintainability
	What Is Maintainability?
	Techniques

	2.3.6 Testing
	What Is Testing?
	Types of Test Data
	Trace Tables

	Summary

