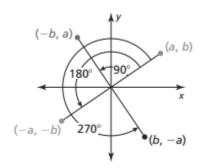
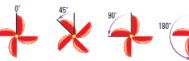
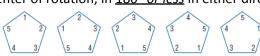
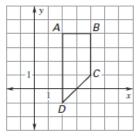

NOTES

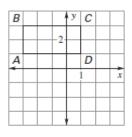

- A <u>rotation</u> uses a fixed point to turn a figure around, or about.
- The fixed point is called the *center of rotation*, or *pivot point*.
- The *angle of rotation* is the angle formed by lines connecting the *pre-image* to the center and the *image* to the center.


- ★ Rotations in the coordinate plane
 - i. Rotation 90° counter-clockwise about the origin
 - Switch coordinates and make the point fit the quadrant. $(x,y) \rightarrow (-y,x)$
 - ii. Rotation 90° clockwise about the origin [or 270° CCW]
 - Switch coordinates and make the point fit the quadrant.

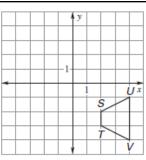


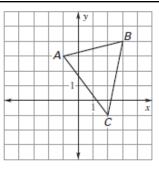
- iii. Rotation 180° about the origin
 - Leave coordinate order alone, but make both of them the opposite sign. $(x,y) \rightarrow (-x,-y)$


- # IF YOU ARE NOT GIVEN A DIRECTION, ASSUME TO GO COUNTER-CLOCKWISE.
- A figure has <u>rotational symmetry</u> if it can be rotated onto itself, using its center as the center of rotation, in <u>180° or less</u> in either direction.



EXAMPLE 1— Name the coordinates of the vertices of the image after the given rotation.

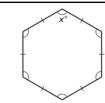

1. 90° clockwise


2. 90° counter-clockwise

3. 180°

4. 270° clockwise

EXAMPLE 2 – Determine whether the figure has rotational symmetry. IF SO, DESCRIBE THE ROTATIONS THAT MAP THE FIGURE ONTO ITSELF.


1.

2.

3.

