
L2/11-070R3

Re: Draft PRI Text on Unicode Regular Expression Guidelines​
Source: Mark Davis​
Date: 2011/02/10

The Unicode Consortium is considering changes to UTS #18 Unicode Regular Expressions

(http://unicode.org/reports/tr18/). These proposed changes have arisen in connection with

questions about case-insensitive and canonical-equivalent matching.

The proposed changes eliminate some requirements on implementations of Unicode Regular

Expressions which have proven to be problematic in implementations, and add clarifications.

The consortium is soliciting feedback on these changes.

Background

Part of the issue to be addressed is to define more precisely the connection between matching of

regular expressions and equivalence relations among strings. Matching under equivalence

relations can be stated more formally as:

Matching under Equivalence Relations. A regular expression R matches according

to an equivalence relation E whenever for all strings S and T, if S is equivalent to T under

E, then R matches S if and only if R matches T.

In the Unicode Standard, the relevant equivalence relation for case-insensitivity is established

according to whether two strings case fold to the same value. The case folding can either be

simple (a 1:1 mapping of code points) or full (with some 1:n mappings).

●​ “ABC” and “Abc” are equivalent under both full and simple case folding.

●​ “cliff” (with the “ff” ligature) and “CLIFF” are equivalent under full case folding, but not

under simple case folding.

The equivalence relation for canonical equivalence is established by whether two strings are

identical when normalized to NFD. That normalization involves n:m mappings and

rearrangements of code points.

●​ <o-horn, dotbelow> and <o-dotbelow, horn> are canonically equivalent, since they both

have the same NFD form: <o, dotbelow, horn>.

1. Full vs. simple case-insensitive matching

It is proposed to withdraw the recommendation for doing full case-insensitive matching in

RL2.4 Default Loose Matches. The text would instead be modified to focus that section only on

issues of case conversion.

The text currently reads:

RL2.4​Default Loose Matches

To meet this requirement:

○​ if an implementation provides for case-insensitive matching, then it shall

provide at least the full, default Unicode case-insensitive matching.

○​ if an implementation provides for case conversions, then it shall provide at least

the full, default Unicode case conversion.

The new text would read:

RL2.4​Default Case Conversion

To meet this requirement, if an implementation provides for case conversions, then it

shall provide at least the full, default Unicode case conversion.

There are two reasons for removing full case-insensitive matching:

1.​ It is unclear how full case-insensitive matching can be effectively implemented in regular

expressions, especially with back references.

2.​ There are a number of examples where the results would be counter-intuitive for typical

users of regular expressions.

It is feasible to describe how to transform text into the fully-case-folded form, and construct

regular expressions targeted at such text. So the discussion in UTS #18 would be changed to

focus on such guidelines and not state them as requirements.

Note: The obsolete link in the text of UTS #18 “To correctly implement a caseless match and

case conversions, see UAX #21: Case Mappings [Case].” would also be corrected to reference

current information about casing in the standard.

2. Canonical-equivalent matching

It is proposed to withdraw the recommendation for doing full canonical-equivalence matching

in RL2.1 Canonical Equivalents. The current text reads:

RL2.1 Canonical Equivalents

To meet this requirement, an implementation shall provide a mechanism for ensuring

that all canonically equivalent literal characters match.

The way most regular expression engines work, this requirement cannot be satisfied. The reason

that it cannot be satisfied results from the fact that canonical equivalence may involve

reordering, splitting, or merging of characters. For example, all of the following sequences are

canonically equivalent:

1.​ o + horn + dotbelow

○​ U+006F (o) LATIN SMALL LETTER O +

○​ U+031B (̛) COMBINING HORN +

○​ U+0323 (̣) COMBINING DOT BELOW

2.​ o + dotbelow + horn

○​ U+006F (o) LATIN SMALL LETTER O +

○​ U+0323 (̣) COMBINING DOT BELOW +

○​ U+031B (̛) COMBINING HORN

3.​ o-horn + dotbelow

○​ U+01A1 (ơ) LATIN SMALL LETTER O WITH HORN

○​ U+0323 (̣) COMBINING DOT BELOW

4.​ o-dotbelow + horn

○​ U+1ECD (ọ) LATIN SMALL LETTER O WITH DOT BELOW +

○​ U+031B (̛) COMBINING HORN

5.​ o-horn-dotbelow

○​ U+1EE3 (ợ) LATIN SMALL LETTER O WITH HORN AND DOT BELOW

The regular expression pattern /o\x{31B}/ matches the first two characters of #1, the first and

third characters of #2, the first character of #3, part of the first character together with the third

character of #4, and part of the character in #5. Some of these issues are brought out in the text

of UTS #18, but implementing RL2.1 is infeasible, because in practice regex APIs are not set up

to match parts of characters or handle discontiguous selections.

There are many other edge cases: A combining mark may come from some part of the pattern

far removed from where the base character was, or may not explicitly be in the pattern at all. It is

also unclear what /./ should match. It is also unclear how regular expression back references

should work.

It is feasible to describe how to construct patterns that will match against NFD (or NFKD) text,

and the description in UTS #18 will be changed to reflect that. That is, it will describe a process

whereby:

●​ The text being matched is put into into a defined normalization form (NFD or NFKD).

●​ The pattern is not modified in any way from what the user provides.

●​ Matching proceeds on a code point by code point basis, as usual.

Note that the author of the pattern must know the normalization form of the text, and write the

pattern accordingly.

http://unicode.org/cldr/utility/character.jsp?a=006F
http://unicode.org/cldr/utility/character.jsp?a=031B
http://unicode.org/cldr/utility/character.jsp?a=0323
http://unicode.org/cldr/utility/character.jsp?a=006F
http://unicode.org/cldr/utility/character.jsp?a=0323
http://unicode.org/cldr/utility/character.jsp?a=031B
http://unicode.org/cldr/utility/character.jsp?a=01A1
http://unicode.org/cldr/utility/character.jsp?a=0323
http://unicode.org/cldr/utility/character.jsp?a=1ECD
http://unicode.org/cldr/utility/character.jsp?a=031B
http://unicode.org/cldr/utility/character.jsp?a=1EE3

3. Case-insensitive matching with properties

It is proposed to add text to UTS #18 to describe more precisely how to match text

case-insensitively. The discussion will outline how a regular expression pattern P can be made to

match insensitively, by making the following changes in the interpretation of P:

1.​ Each string is matched case-insensitively. That is, it is logically expanded into a

sequence of OR expressions, where each OR expression lists all of the characters that

have a simple case-folding to the same value.

○​ For example, /Dåb/ matches as if it were expanded into

/(?:d|D)(?:å|Å|Å)(?:b|B)/

○​ Back references are subject to this logical expansion, such as /(?i)(a.c)\1/, where

\1 matches what is in the first grouping.

2.​ Each character class is closed under case. That is, it is logically expanded into a

set of code points, and then closed by adding all simple case equivalents of each of those

code points.

○​ For example, [\p{Block=Phonetic_Extensions} [A-E]] is a character class that

matches 133 code points (under Unicode 6.0). Its case-closure adds 7 more code

points: a-e, Ᵽ, and �, for a total of 140 code points.

For both property character classes and explicit character classes, closing under simple

case-insensitivity means including characters not in the set. For example:

●​ The case-closure of \p{Block=Phonetic_Extensions} includes two characters not in that

set, namely Ᵽ and �.

●​ The case-closure of [A-E] includes five characters not in that set, namely [a-e].

There have been suggestions to restrict case insensitive regex matching so that it would not

apply to some or all property-based character classes. One suggestion for an alternative

approach, for example, is to close all of the POSIX-Compatible properties listed in Annex C:

Compatibility Properties under case, but not other Unicode properties. That would require

some narrower notion of matching under an equivalence than that presented in Matching under

Equivalence Relations above in the Background section. For example, under Matching under

Equivalence Relations, the following is true:

/(?i)[[\x{80}-\x{FF}]-[:Block=Latin_1_Supplement:]]/ = /[]/

(note that Latin_1_Supplement block is identical to U+0080..U+00FF)

Under that alternative approach, in which the block property was not case folded, the following

would be true:

http://unicode.org/reports/tr18/#Compatibility_Properties
http://unicode.org/reports/tr18/#Compatibility_Properties

/(?i)[[\x{80}-\x{FF}]-[:Block=Latin_1_Supplement:]]/ = /[Å Ÿ]/

Also under that alternative approach, an implementation cannot fully resolve a character class

containing properties, and then apply case-closure; instead, it must apply case-closure

selectively as the character class is interpreted.

	L2/11-070R3
	There have been suggestions to restrict case insensitive regex matching so that it would not apply to some or all property-based character classes. One suggestion for an alternative approach, for example, is to close all of the POSIX-Compatible properties listed in Annex C: Compatibility Properties under case, but not other Unicode properties. That would require some narrower notion of matching under an equivalence than that presented in Matching under Equivalence Relations above in the Background section. For example, under Matching under Equivalence Relations, the following is true:

