SCH 4UI: Unit 2 - Energy Changes and Rates of Reaction

Big Ideas

- All chemical and physical changes involve an exchange of energy with the surroundings.
- Energy changes and rates of chemical reactions can be described quantitatively.

Learning Goals

By the end of this unit, I will be able to...

Date	Learning Goal
	1. Outline the first and second law of thermodynamics and how
	they relate to chemical reactions
	Describe what the enthalpy of reaction represents and how it is represented
	3. Distinguish between an endothermic and exothermic reaction
	 Calculate the heat exchanged for a given chemical reaction using enthalpy and amount of reactant
	Compare enthalpy changes associated with physical, chemical and nuclear changes
	6. Calculate the enthalpy of reaction by experiment
	 Describe how a simple calorimeter works in relation to the first and second law of thermodynamics
	 Build a simple calorimeter and experimentally determine the enthalpy change for a given physical change and chemical reaction
	 Use Hess's Law of Heat of Summation to determine the enthalpy change for a chemical reaction
	10. Write out formation equations
	11. Apply Hess's Law using standard molar enthalpies of formation to determine the enthalpy change for a chemical reaction
	12. Experimentally determine the enthalpy of reaction using Hess's Law for a given chemical reaction
	13. Outline how reaction rates can be measured
	14. Express reaction rates mathematically
	15. Calculate the rate of reaction for a given reactant or product in a chemical equation
	16. Express reaction equations as a rate law equation and determine the order of the reaction with respect to the reactants
	17. Calculate the rate constant for a chemical reaction with the appropriate units

 Determine the order of reaction based on graphical analysis of reaction rates
 Outline the factors that that affect the quality of collisions in a chemical reaction
20. Draw a complete potential energy diagram by including enthalpy change and activation energy for a chemical reaction
21. Calculate the activation energy and enthalpy change for the forward and reverse reaction on a given potential energy diagram
 Identify reaction intermediates and catalysts in a reaction mechanism
 Determine the molecularity for a given elementary step in a reaction mechanism
24. Evaluate a proposed reaction mechanism
25. Determine the rate-determining step in a reaction mechanism
26. Determine the rate law equation based on the rate-determining step of a reaction mechanism
27. Describe how a catalyst affects the rate of a reaction with respect to enthalpy and activation energy
28. Experimentally determine the order of reaction of the reactants and the rate law equation for a given chemical reaction