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1. Introduction 

The G3 Cluster under the COSPAR/ISWAT (International Space Weather Action Teams) 

initiative (https://www.iswat-cospar.org/g3) mainly refers to the near-Earth radiation and plasma 

environment. The goal of the Cluster is to perform impact-driven model assessment; to advance 

science understanding and modeling capability of the region; to stay connected with other relevant 

clusters’ progress and seek collaborative inter-cluster efforts; and to help end users with better tools 

and products.   

The near-earth radiation and plasma environment consist of diverse particle populations of different 

origins that often evolve dynamically over time and space, and span across a broad energy range. 

Such an environment poses challenges from both science and space weather-impact perspectives. 

It brings about deleterious effects on spacecraft electronics and/or life in space.  

Figure 1 summarizes the main space weather impacts and their environmental sources for the G3 

Cluster. Ring current, aurora and plasma sheet particles can be potential space environmental 

sources for surface charging (e.g., Ganushkina, Jaynes, and Liemohn, 2017). Electrons greater 

than 100 keV and up to several MeV (mainly from radiation belt electrons) are responsible for 

internal charging. Strict energy limit for surface charging and internal charging can be 

https://www.iswat-cospar.org/g3


 

ambiguous as the effects are highly dependent on the materials. GCR (Galactic Cosmic Rays) 

particles (hundreds of MeV to many GeVs in energy) originating outside our solar system and 

from supernova explosions and SEPs (Solar Energetic Particles) from solar eruptive events (with 

energies in the range of a few keV up to several GeV) can find their way into the near-Earth 

region depending on their energy and the strength/variations of fields they propagate through. 

South Atlantic Anomaly (SAA) region is another source for high-energy trapped protons/ions. 

GCRs, SEPs and SAA trapped protons constitute three major sources for radiation hazards in 

terms of single-event effects on space hardware, avionics and radiation dose effects on human 

activties in space and at aviation altitudes. Energetic electrons (>100 keV), protons (>1 MeV), 

heavy ions and neutrons can lead to total dose effects over time. 

Due to the complexities of this cluster G3, the diverse populations of particles involved, and its 

rich and far-reaching space weather impacts, this review reflects the limited yet unique views of 

this important region of space, focusing on recent progress, gaps in research and applications, 

and our recommendations on priorities for the next 5-10 years by taking heed of both science and 

space weather operations needs.   

2. Current Understanding of the Near-Earth Environment and the Modeling Status  

●​ Knowledge of the near-Earth Space radiation and plasma environment 

○​ Different plasma populations and their system connections to different  S and H 

clusters 

■​ Ring current and aurora 

■​ Radiation belts 

What we know about ring current (cite review papers  

Different species behaviors 

External solar wind drivers 



 

Behaviors of different phases of a storm 

Quiet times 

O+ difference during CIR or CME storms 

Seed population of plasma sheet 

Tail connections 

Adjacent neighhood connections 

Energy dependent two different proton population  (Gkioulidou et al, 2016) 

Convective <=80 keV protons 

Diffusive >100 keV protons 

Nonadiabatic process, cross-scale energy transfer 

Radiation belt 

Energy dependent physics (penetration into inner region)  xinlin Li, Baker et 

Limiting flux also energy dependent (Man Hua et al) 

Substorm: maximum fluxes strongly correlate to cumulative effects of substorms 

instead of storms, with the strongest dependence on the time-integrated AL  

Impenerable barrier  Baker 2014  

Storage ring (three-belt structure of ultrarelativistic electrons)  sub-MeV too ( Hao 

et al., 2020) 

ultrarelativistic electrons 

energy -depdent acceleration, different acceleration mechanisms at play during 

different stages 

Fast precipitation (Zhang Xiajia) 



 

Energy dependent precipitation 

Wave - particle interactions  (progress) 

Loss /magnetopause, loss to the atmosphere, etc.  

Better diffusion due to better wave characterization 

Machine learning progress (models, boundary conditions,  

Gap 

Nonlinear wave-particle interactions (e.g., large amplitude waves) 

Time domain structures, alfven waves,  

■​ SEPs in the magnetosphere 

 

the natural upper limit of the electron acceleration is driven by chorus waves (Man Hua 



 

 

●​ Gaps  

○​ Cold plasma population – not well measured & understood, important for ring 

current and radiation belt particle dynamics, critical element for surface charging 

○​ Ring current particles 

■​ tail/plasma sheet connections (seed population) 

■​ Wave effects 

○​ Radiation belt electrons 

■​ tail/plasma sheet connections (seed population) 

■​ Nonlinear wave-particle interactions 



 

■​ Rapid variations (different temporal scales) of radiation belt electron 

dynamics 

●​ Around shock impingement, dynamic tail reconfiguration  (for 

both ring current and radiation belt populations 

Ref: Zong (2022), Zong, Yue, Fu (2021), Yue et al (2017) 

○​ SEPs in the near-Earth region 

■​ Limited observations 

■​ Not well-characterized 

■​ Access to the region depends on geomagnetic activities/magnetic field 

(rigidity cutoff) 

 

These gaps also form the basis for our recommendations (more on the science advances aspect).  

 

 

●​ Overview of current models 

○​ Ring current/auroral energies (current capability and gaps) 

■​ Note: Reference to G1 paper’s chapter on auroral precipitation 

○​ Radiation belt electron environment (current capability and gaps) 

○​ SEP models in the inner magnetosphere (..) 

■​ Including rigidity cutoff models 

■​ SPAM (Janet Green et al’s model) 

■​ others 



 

○​ Models of assessing radiation exposures at aviation altitudes 

 

●​ Multi-purpose model validation efforts 

 

 Impacts Effect Metric Science Predictands Time Period (Space 
Weather) 

Surface 
Charging 

>10 keV e- flux >10 keV e- flux; Te; Ne seconds 

Internal 
Charging 

>100 fA/cm2 [100 
mils] 

1 MeV and > 2 MeV e- flux 24-hour, 72hr 
averaged 

Single Event 
Effects 

SEE rate [100 mils] >30 MeV p+ flux; >15 
MeV.cm2.mg-1 LET flux 

5-min, daily, weekly  
(worst) 

Total Dose Dose in Silicon[100 
mils; 4 mils] 

30-50 MeV p+ flux; >1.5 
MeV e- flux 
1-10 MeV p+ 

Daily, weekly, 
yearly 

Aviation Dose rate in aircraft 
(D-index) 

2 spectral parameters (power 
law with rigidity) 

5-min, Hourly 

 

○​ Internal charging 

○​ Surface charging 

○​ Radiation Effects at Aviation Altitudes 



 

 

Space Weather Effects Models: current status and needs  

●​ Surface charging  – Joe Minow leads a review paper 

●​ Internal charging  - Wousik Kim leads a review paper 

●​ Total dose 

●​ Effects of SEPs 

●​ Radiation Effects at Aviation Altitudes 

 

 

Space Weather Operational Needs 

 

●​ Data assimilative capabilities 

●​ Observational needs 

 

Recommendations for the next 5 years 

 

Internal charging 

●​ Observations:  

○​ Needs to have SCATHA like missions of to measure charging directly (space 
weather impacts on space hardware)  

○​ Global coverage of 300 keV – 10 MeV electron flux with on-orbit sensor data, to 
close gaps in MEO and for HEO. data buys from commercial satellites (e.g., GPS) 



 

○​ Connecting LEO and GTO - including LEO radiation data for belt specification 

(Weichao suggested a modeling challenge can be done using the LEO 

measurements as model constraints instead of GEO) 

●​ Modeling 

○​ More User-oriented Model validation (participation of different types of models 
and newly developed models) and identify modeling inadequacy -> improvement; 
scoreboard of models relevant to internal charging 

○​ Modeling the space environment relevant to internal charging from a system 
perspective (including the solar source/drivers.. ) 

●​ End users (e.g., satellite operators)’ feedback on the desired model capabilities 

 

Surface charging 

●​ More User-oriented Model validation (participation of different types of models and 
newly developed models) à identify modeling inadequacy -> improvement 

●​ Modeling the space environment relevant to surface charging from a system perspective 

●​ End users (e.g., satellite operators)’ feedback on the desired model capabilities  

●​ Cold plasma population 

●​ Daylight charging and its signature 

●​ Develop realtime charging indicator for users 

●​ Lack of consensus across industry whether surface charging is an issue for LEO assets 

●​ Surface charging for cislunar (model, data, both needs improvements) 

●​ Organizing Surface Charging Benchmarking Challenge II: Validation of Surface 

Charging Models (e.g., SPIS, NASCAP, CPIC, ...) 

 

 

 



 

Radiation Effects at Aviation Altitudes 

●​ Developing a strategy for continuous measurements and identifying the regions that need 
those measurements. Including measurements for improving model inputs (energy 
spectra) and for model validation 

●​ More measurements on multi-platforms (balloon, airplanes, ISS, etc), especially during 
SEP events 

○​ Characterizing radiation measuring instruments 

○​ Defining standards of radiation monitoring at aviation altitudes. 

●​ Characterizing radiation weather from the surface to space, of which the aviation 
environment is but one part. Assimilation of data into models is the tried-and-true method 
for doing this in the tropospheric weather, ionosphere, neutral atmosphere communities 
and for radiation community is the same. Ensemble modeling is also good for helping 
define the uncertainties in the system and is the other part of the task. 

●​ End users’ feedback on the desired model capabilities 

●​ More model validation (important)  

○​ ICAO space weather advisory centers use different aviation radiation effects 
models and they don’t agree with each other  

●​ Products need to be impact based, not intensity based such as S3 scales, easy to use, 
consistent color schemes for the same type of products 

 

Specification of SEPs in the Magnetosphere 

 

●​ Develop a unified SEP model/or well-validated model(s) for the magnetosphere 
(currently a gap) 

●​ Modeling the space environment relevant to SEPs in geospace from a system perspective, 
scientists working on SEPs in solar & heliospheric physics domain should work together 
with scientists (far fewer) working in the magnetospheric domain 

●​ End users (e.g., satellite operators)’ feedback on the desired model capabilities 

●​ Observations at different altitudes/longitudes are important to see transportation of SEP. 



 

●​ Ground-based observations about SEP including GLE at different latitudes are essential 
to monitor SEP variations. 

●​ Model validation is critically needed 

 

 

General points/Common needs:  

 

●​ Data assimilative capabilities for modeling all space environments (internal charging, 

surface charging, radiation environment, etc) 

●​ Continuous communications/feedback between model/product developers  (including 

impact analysis tools) and end users  

 

●​ Develop orbit, region specific tools/products (datasets, models, or hybrid) for users (for 

example, different LEO orbits, MEO, GEO and fine distinctions)  

●​ Better descriptions and educational materials for end users about different models 

(capabilities and caveats)  

○​ How to increase awareness among various user communities (including the 

general public, stakeholders, policymakers, etc) and train/educate them about the 

impacts of Space Weather on operational systems and society? 

○​ Knowledge capture and transfer: how to ensure that what was built up (our 

heritage/legacy, especially on impact testing, mitigation, prevention)  is properly 

handed over to new generations?  

●​ Central location/depot for all models 



 

 

Observation needs 

1.​ recommend developing and/or procuring low-cost, low-power consumption, and compact 

sensor suites and flying them on all future missions in order to measure and quantify 

space weather impacts, in addition to the main instrumentation 

●​ Heavy ions - high energies (SEP) for spacecraft anomaly resolution and for 

aviation safety  

●​ Low energies, cold plasma 

○​ Surface charging analysis 

●​ Need impact measurements (charging, radiation effects, etc) on more 

modern/recent spacecraft/spacecraft hardware 

2.​ Commercial data buys (for critically need data that can improve current space weather 

products and capabilities), RFI for data purchase 

Better understanding of cislunar plasma/radiation environment and plasma-dust interactions 

(maybe not) 

Applying System science approach, across different clusters and beyond 

Take advantage of machine learning for model boundary conditions and stand-alone models 

Scoreboard activities for science and application 

Data calibration, standarization and archive 

Value of OSSE (Observing System Simulation Experiment) for optimizing future measurements 

and strategy planning 

Promoting interdisciplinary and transdisciplinary work and collaboration  



 

 

 

An anomaly database  - always a challenge and a desired resource 

 note : Both SPEs and energetic electron precipitation can have a long-lasting impact on the 

stratospheric composition, particularly, the stratospheric ozone during polar winter; as ozone is 

one of the key species in radiative heating and cooling of the stratosphere, changes in its 

concentration induce dynamical changes in the middle atmosphere, which can couple down even 

into the troposphere and affect regional climate patterns. The impact of SPEs and aurorae on 

atmospheric composition is well constrained by observations and reasonably well reproduced by 

model studies. The impact of relativistic electrons from the radiation belts on the mesosphere 

above ≈70 km is now also well established from observations; however, a direct impact of 

relativistic electrons on stratospheric composition is still a matter of debate. More specific 

information on the different sources of particle precipitation and their variability as well as their 

treatment in state-of-the art climate models can be found in reviews by, for example, Sinnhuber 

et al. (2012), Mironova et al. (2015), and Matthes et al. (2017). 

 

 

Users involved 

●​ Satellite (design, launch, operations, anomaly resolution) 

●​ Aviation 

●​ Emergency Management(radiation impacts on HF communication in the polar cap) 

●​ Human exploration 
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