Host: Bryan Stanley Guest: Zohreh Davoudi

This transcript has been automatically transcribed using Audiate® and lightly edited by volunteers (Esther Cohen-Lin, ..) using their personal time.

We welcome any suggestions for further edits using the comment function in this Google Doc.

```
1
00:00:00,000 --> 00:00:04,350
... Welcome to this episode of My Journey as a Physicist.
2
00:00:04,350 --> 00:00:07,350
On this episode we are joined by Dr Zohreh Davoudi,
3
00:00:07,350 --> 00:00:10,560
an assistant professor at the university of Maryland.
4
00:00:10,560 --> 00:00:16,620
Welcome professor Zohreh Davoudi. Could you briefly introduce yourself. What is your
5
00:00:16,620 --> 00:00:19,980
position and what is sort of work that you do?
6
00:00:19,980 --> 00:00:26,550
Hi, thanks for having me here. I'm an assistant professor of physics at the University of
Maryland.
7
00:00:26,550 --> 00:00:30,960
I'm doing theoretical research in physics.
8
00:00:30,960 --> 00:00:35,700
And in particular in the area of nuclear and particle physics.
00:00:35,700 --> 00:00:39,630
And besides doing research I also teach
```

```
10
00:00:39,630 --> 00:00:44,430
and advise the students and early career scientists
11
00:00:44,430 --> 00:00:51,345
as part of my job. And I participate in various different activities related to
12
00:00:51,345 --> 00:00:55,140
the community and workshops and programs.
13
00:00:55,140 --> 00:01:01,750
So kind of this constitutes uh my my everyday life as as a researcher and scientist.
14
00:01:01,750 --> 00:01:06,190
Could you talk a little bit what your research actually looks at?
15
00:01:06,190 --> 00:01:09,550
Yes, so my research is sitting at the
16
00:01:09,550 --> 00:01:13,540
intersection of kind of two or three fields.
17
00:01:13,540 --> 00:01:20,470
Originally, where I come from is kind of interest in the physics of strong interactions,
18
00:01:20,470 --> 00:01:23,710
how the elementary particles of the
19
00:01:23,710 --> 00:01:27,540
Standard Model such as quarks and gluons
20
00:01:27,540 --> 00:01:31,630
```

build the matter in the form that we know of

```
21
```

00:01:31,630 --> 00:01:38,220

and kind of how the complexities in the visible matter in the universe arise from these

22

00:01:38,220 --> 00:01:41,580

fundamental interactions and elementary particles.

23

00:01:41,580 --> 00:01:44,730

For example, even understanding how the

24

00:01:44,730 --> 00:01:48,660

core of an atomic nucleus, the proton and neutron

25

00:01:48,660 --> 00:01:53,280

come out of these interactions of the standard model and in particular

26

00:01:53,280 --> 00:01:58,140

quarks and gluons and how they, they interact,

27

00:01:58,140 --> 00:02:02,250

is a very non-trivial question. And with the tools

28

00:02:02,250 --> 00:02:07,380

that my community of researchers and myself had been developing,

29

00:02:07,380 --> 00:02:11,370

we are starting to answer questions of

30

00:02:11,370 --> 00:02:14,565

what are the fundamental properties of these objects

31

00:02:14,565 --> 00:02:18,930

are, and starting from the quark and gluon degree

```
32
00:02:18,930 --> 00:02:22,770
of freedom of the strong interactions. Uh so that's really sort of
33
00:02:22,770 --> 00:02:26,970
the cornerstone of my my theoretical research.
34
00:02:26,970 --> 00:02:32,730
And in order to address this problem, I use various different tools and techniques
35
00:02:32,730 --> 00:02:36,630
and and theoretical backgrounds that I can talk about as as we go
36
00:02:36,630 --> 00:02:40,530
on...You mentioned the community that you work in...
37
00:02:40,530 --> 00:02:46,365
how big is your research group? And do you work primarily alone? Do you have a team of
graduate or
38
00:02:46,365 --> 00:02:50,100
other faculty you work with as a part of a larger collaboration?
39
00:02:50,100 --> 00:02:53,370
Um, that's a very good question. So it used to be
40
00:02:53,370 --> 00:02:57,180
that if you say someone is a theoretical physicist, that means that
41
00:02:57,180 --> 00:03:01,920
that person would sit down alone in a room and work from
42
00:03:01,920 --> 00:03:06,690
```

morning to late evening on problems on his or her own,

43

00:03:06,690 --> 00:03:12,000

and that's sort of a notion of theoretical physicists. Nowadays this notion is changing because

44

00:03:12,000 --> 00:03:18,480

the size of problems that we would like to address in our research is really large

45

00:03:18,480 --> 00:03:24,750

and the complexity is really high. That means that just that notion of solving a problem by

46

00:03:24,750 --> 00:03:31,590

your own does not apply anymore. And in fact there are large theoretical collaborations,

47

00:03:31,590 --> 00:03:36,060

just like with the experimental collaborations; maybe not as large,

48

00:03:36,060 --> 00:03:40,830

but it's still a large collaborations are sometimes required

49

00:03:40,830 --> 00:03:44,190

to perform meaningful theoretical research,

50

00:03:44,190 --> 00:03:47,880

particularly in the field of nuclear and high-energy physics.

51

00:03:47,880 --> 00:03:50,970

So my numerical work,

52

00:03:50,970 --> 00:03:55,140

which would require solving the theory of a strong force

53

00:03:55,140 --> 00:03:58,830

using supercomputers, particularly needs

54

00:03:58,830 --> 00:04:02,970

large collaborations with people with various sets of skills

55

00:04:02,970 --> 00:04:09,570

from numerical and algorithmic computational to very formal and theoretical,

56

00:04:09,570 --> 00:04:13,050

to really join forces and solve these problems.

57

00:04:13,050 --> 00:04:19,440

So for example, I'm part of a collaboration called NPLQCD which stands for

58

00:04:19,440 --> 00:04:26,325

"nuclear physics from lattice QCD", sounds like a technical term, but really it means that getting

59

00:04:26,325 --> 00:04:30,570

nuclear physics out of the quarks and gluons of nature

60

00:04:30,570 --> 00:04:33,930

And using a high-performance computing and super

61

00:04:33,930 --> 00:04:38,340

computer sort of technologies and computational methods.

62

00:04:38,340 --> 00:04:45,060

So this collaboration is a group of, depending on the projects, maybe 10 to 15 people.

63

00:04:45,060 --> 00:04:50,760

And it ranges from serious senior scientists to junior scientists to the postdocs and the

64

00:04:50,760 --> 00:04:54,810

students So it's a very fun collaboration to be part of.

65

00:04:54,810 --> 00:04:58,230 But also I do research on kind

66

00:04:58,230 --> 00:05:01,830

of newer methods to address problems that

67

00:05:01,830 --> 00:05:07,890

I'm interested in, and this methods are based on quantum computing and quantum simulation.

68

00:05:07,890 --> 00:05:11,910

Um so again this is a field that is really growing,

69

00:05:11,910 --> 00:05:18,480

and because of its nature it means that it really needs collaborations and different of people

70

00:05:18,480 --> 00:05:23,220

of different factor on an expertise to come together and talk to each other.

71

00:05:23,220 --> 00:05:30,120

So part of my group, I think, University of Maryland is really sort of a group of maybe up to 10.

72

00:05:30,120 --> 00:05:36,930

Uh really interested and talented students and post-docs and early career scientists

73

00:05:36,930 --> 00:05:40,440

as well as some senior colleagues and collaborators

74

00:05:40,440 --> 00:05:46,770

that are interested in understanding how quantum computing and quantum simulation can be

75

00:05:46,770 --> 00:05:52,800

useful for research in nuclear particle physics. So kind of these two different communities

76

00:05:52,800 --> 00:05:58,740

are trying to understand how they can help each other out and advance the science.

77

00:05:58,740 --> 00:06:03,780

You kind of mentioned what people think: what a theorist does versus what they actually do.

78

00:06:03,780 --> 00:06:09,690

Another preconception I have in my mind is, or if there is I'm working pen to paper on doing

79

00:06:09,690 --> 00:06:14,160

these equations on a piece of paper, and but you're talking about doing computers and

80

00:06:14,160 --> 00:06:20,280

simulation Like how much of your actual work is pen and paper versus I am programming.

81

00:06:20,280 --> 00:06:25,230

Yeah. It really depends on the type of theory and research you're doing.

82

00:06:25,230 --> 00:06:29,910

So I'm not claiming that every theory problem out there nowadays

83

00:06:29,910 --> 00:06:33,600

needs a bit of computer. Of course there are still topics

84

00:06:33,600 --> 00:06:37,530

that people just sit down and work it out on a pen and paper.

85

00:06:37,530 --> 00:06:43,320

But what I'm seeing is that more and more are moving towards an era where

86

00:06:43,320 --> 00:06:46,950

we understand that we have more tools to compute and

87

00:06:46,950 --> 00:06:51,720

calculate that we had before. 50 years ago we didn't have a computer.

88

00:06:51,720 --> 00:06:57,270

A hundred years ago we had different different tools and skills and perspectives.

89

00:06:57,270 --> 00:07:02,850

So as theoretical physics physicists, we are moving with the technology, we are

90

00:07:02,850 --> 00:07:06,930

expanding our horizon of what is possible,

91

00:07:06,930 --> 00:07:12,090

what other complicated problems we can go after there, now that we have new tools.

92

00:07:12,090 --> 00:07:17,640

And this is really kind of an evolving feature for for theory work.

93

00:07:17,640 --> 00:07:22,935

And that what that means is that we now realize that not only we need mathematical and formal

94

00:07:22,935 --> 00:07:28,470

skills, but we also need to know how to talk to a computing machine

95

00:07:28,470 --> 00:07:32,115

and be able to translate our formal problem to

96

00:07:32,115 --> 00:07:36,180

a numerical problem. It's not an easier step, as it turned out.

97

00:07:36,180 --> 00:07:41,760

And it really requires that you understand your theory very well, you need to be a theorist to

98

00:07:41,760 --> 00:07:46,650

really bridge this path of going from pen and paper to computer.

99

00:07:46,650 --> 00:07:51,060

And then again you need to be a really good physicist or theorist

100

00:07:51,060 --> 00:07:56,190

to be able to translate your theories now to a quantum computing machine,

101

00:07:56,190 --> 00:08:01,930

right? So it's just a matter of more technologies are becoming available to us.

102

00:08:01,930 --> 00:08:08,830

So as theorists, we understand that "Oh, we have more capabilities to go after even more difficult problems"

103

00:08:08,830 --> 00:08:12,640

and this is kind of evolving and it's fun and interesting. And I think

104

00:08:12,640 --> 00:08:16,480

if you talk to someone in 10, 20, 30 years,

105

00:08:16,480 --> 00:08:20,560

their notion of theoretical physics would definitely be different.

106

00:08:20,560 --> 00:08:26,200

I have those questions. This is mainly because I don't necessarily have the background of how quantum computers work,

107

00:08:26,200 --> 00:08:32,740

so doing simulations or working with quantum computers, what does that gain you? Do you have to

```
108
```

00:08:32,740 --> 00:08:38,169

solve problems in a different way if you do it on like a quantum computer or is essentially just

109

00:08:38,169 --> 00:08:43,179

you have more powers that you can solve more complex problems?

110

00:08:43,179 --> 00:08:49,765

Yeah, absolutely. Very good question because sometimes the understanding or the misconception

111

00:08:49,765 --> 00:08:56,080

out there is that we are going to have this quantum computers to completely replace

112

00:08:56,080 --> 00:09:01,270

kind of already working classical computers and machines.

113

00:09:01,270 --> 00:09:07,905

That's not true, right? We have made a huge progress, and by we I mean, a large

114

00:09:07.905 --> 00:09:14,070

community of computer scientists and applied mathematicians and fundamental

115

00:09:14,070 --> 00:09:19,320

scientist and algorithmic experts and hardware experts,

116

00:09:19,320 --> 00:09:26,085

and to build this very large powerful supercomputers they can perform calculations

117

00:09:26,085 --> 00:09:30,150

of very huge complexity and size.

118

00:09:30,150 --> 00:09:33,270

So we have to keep in mind that

119

00:09:33,270 --> 00:09:38,850

certain problems that we do now in science and in particular in physics

120

00:09:38,850 --> 00:09:43,440

we have a very well controlled over the computational complexity

121

00:09:43,440 --> 00:09:47,190

by doing high-performance computing. And in fact we can reach

122

00:09:47,190 --> 00:09:50,190

very precise answers for

123

00:09:50,190 --> 00:09:53,670

the problems we're after. For example, in nuclear and particle

124

00:09:53,670 --> 00:09:57,390

physics using this method of lattice QCD that I'm using.

125

00:09:57,390 --> 00:10:01,900

But on the other hand you have to identify the sort of problems

126

00:10:01,900 --> 00:10:08,020

that are not within the reach of the current classical supercomputers.

127

00:10:08,020 --> 00:10:12,220

For example, we have to understand how our problem is scaled

128

00:10:12,220 --> 00:10:17,380

with the size, with the number of degrees of freedom, with the complexity that we add to it,

129

00:10:17,380 --> 00:10:23,650

that if we're interested in certain problems, certain quantities, certain precision on that quantity,

130

00:10:23,650 --> 00:10:29,905

we are not going to get that, even if you start to kind of grow our compensation complexity then

131

00:10:29,905 --> 00:10:33,880

extrapolate to the future just as it has been in the past.

132

00:10:33,880 --> 00:10:37,810

We're not going to get there. We're not going to get there in 50 years or a hundred years.

133

00:10:37,810 --> 00:10:44,650

Basically because there's an exponential growth in the complexity of the problems and the size of the problems.

134

00:10:44,650 --> 00:10:49,900

And that's when you start to say "alright maybe this particular problem is not really suitable

135

00:10:49,900 --> 00:10:54,310

for the computational framework in classical

136

00:10:54,310 --> 00:10:57,340

a high performance computing that I've been using,

137

00:10:57,340 --> 00:11:02,620

so I have to start thinking about a different type of computing.

138

00:11:02,620 --> 00:11:06,370

And once every scientist, every engineer,

139

00:11:06,370 --> 00:11:10,240

depending on what your problem is, identify those problems,

140

00:11:10,240 --> 00:11:13,900

then you should start to learn the rules of quantum mechanics

141

00:11:13,900 --> 00:11:20,410

and how the rules of quantum mechanics turn out to the speed of computations, if you are able to

142

00:11:20,410 --> 00:11:23,875

Build a computer out of

143

00:11:23,875 --> 00:11:27,610

quantum mechanical degrees of freedom

144

00:11:27,610 --> 00:11:31,630

that behave quantum mechanically and show entanglements

145

00:11:31,630 --> 00:11:37,120

and all these various strange properties that we see in quantum mechanics, they put them all

146

00:11:37,120 --> 00:11:43,240

together and take advantage of these to be able to speed up the computations in a way that if

147

00:11:43,240 --> 00:11:46,750

you start to double a multiple the size of your problem,

148

00:11:46,750 --> 00:11:50,140

you don't have to double the multiple the size of your computer.

149

00:11:50,140 --> 00:11:54,550

We only do that logarithmically, which is a very great improvement.

150

00:11:54,550 --> 00:11:59,440

And not only that now you can use entanglements in quantum mechanics.

00:11:59,440 --> 00:12:03,480

To also paralyze the operations on your

152

00:12:03,480 --> 00:12:08,130

bits or cubits in a way that is not possible classically.

153

00:12:08,130 --> 00:12:12,390

So again that's where that theoretical perspective comes in.

154

00:12:12,390 --> 00:12:17,250

Because you have to be a physicist, even if you are an experimentalist, you have to really

155

00:12:17,250 --> 00:12:23,040

understand this theory and working principles of these machines to be able to first build these

156

00:12:23,040 --> 00:12:29,400

machines, if you're an experimentalist, or to be able to use them to solve your problem,

157

00:12:29,400 --> 00:12:35,130

if you're a theoretical physicist. Yeah, that's amazing. There's a lot of moving parts there.

158

00:12:35,130 --> 00:12:41,880

I guess I'm I'm curious about when did you first become interested in physics and then maybe

159

00:12:41,880 --> 00:12:45,540

later on, how did you get interested in this field of physics?

160

00:12:45,540 --> 00:12:51,300

Uh Hey yes. So it's not a hard question because I exactly remember how things evolved

161

00:12:51,300 --> 00:12:58,230

for me, from wanting to be many different things and eventually settling on becoming a physicist.

00:12:58,230 --> 00:13:01,680

And it actually happened at a very early age because

163

00:13:01,680 --> 00:13:05,220

once I started to go to a school, elementary school,

164

00:13:05,220 --> 00:13:09,090

I started to realize I enjoyed math.

165

00:13:09,090 --> 00:13:15,240

And I enjoy working out hard problems. The problems that won't take me a second to solve.

166

00:13:15,240 --> 00:13:20,820

Might take half a day to think about them and then go around and ask people and try to

167

00:13:20,820 --> 00:13:25,290

to argue one way or another, and I really enjoyed that and I thought "okay.

168

00:13:25,290 --> 00:13:28,620

So maybe math mathematician is a good

169

00:13:28,620 --> 00:13:33,270

Uh trajectory for for my future." And I was like very early age.

170

00:13:33,270 --> 00:13:36,795

And it wasn't until my father actually went back to a

171

00:13:36,795 --> 00:13:40,710

school to get the second degree in physics.

172

00:13:40,710 --> 00:13:47,055

So he was a science teacher and he saw that he could probably use a little bit more

00:13:47,055 --> 00:13:52,860

challenge in in life and like uh, learning in the more complex subject, and come back and then

174

00:13:52,860 --> 00:13:56,535

maybe teach physics. So although he had children and he had a full-time

175

00:13:56,535 --> 00:14:01,680

job and he said "No I want to go back to college." And then he chose physics.

176

00:14:01,680 --> 00:14:07,140

And then, so I got interested. I talked to my father quite a bit.

177

00:14:07,140 --> 00:14:13,830

And I started to learn that all right physics is really kind of that subject that captures

178

00:14:13,830 --> 00:14:18,390

both the mathematical beauty and also

179

00:14:18,390 --> 00:14:25,350

tries to use this mathematical structure and beauty to for an application to understand nature

180

00:14:25,350 --> 00:14:31,170

and answer big mysterious questions about where we come from? Where do we go?

181

00:14:31,170 --> 00:14:35,640

What's the fate of our universe? What are the working principles of our universe?

182

00:14:35,640 --> 00:14:41,070

So really captured my my interests. I was probably in middle school at that time.

183

00:14:41,070 --> 00:14:45,630

And I sorted of started to think about "All right, physics is what I wanted to do."

```
184
```

00:14:45,630 --> 00:14:50,070

Um, my notion of becoming a physicist but obviously very obscure right?

185

00:14:50,070 --> 00:14:55,260

I had no idea. All right, I thought maybe a physicist would end up in, in a space.

186

00:14:55,260 --> 00:15:01,560

And does um a space physics and um explores Uh other planets.

187

00:15:01,560 --> 00:15:07,450

I didn't quite know what the physicist is like actual advanced physics...physicists would do.

188

00:15:07,450 --> 00:15:10,870 Um but it's still I want it to move on

189

00:15:10,870 --> 00:15:15,460

and see what happens. So even when you went and got your

190

00:15:15,460 --> 00:15:20,110

your degrees in physics, did you decide "Yes I want to go

191

00:15:20,110 --> 00:15:25,420

through this this academic route" or did you ever think "oh I want to maybe experiment in

192

00:15:25,420 --> 00:15:31,090

different areas whether that be industry or other areas that you might apply physics".

193

00:15:31.090 --> 00:15:36,040

Yeah Yeah absolutely. So. Um, I guess I kind of made that decision very early on. When I

194

00:15:36,040 --> 00:15:42,520

was choosing college, because the way so I come from a different country um I just came to the US

00:15:42,520 --> 00:15:48,070

for graduate school but I did most of my studies before then in Iran.

196

00:15:48,070 --> 00:15:51,835

And so the kind of culture and environment buzz difference.

197

00:15:51,835 --> 00:15:56,380

There, if you weren't with a student with really good mathematical skills,

198

00:15:56,380 --> 00:16:02,380

you would pick an engineering degree. Because that's a high paying the high paying jobs are engineering

199

00:16:02,380 --> 00:16:05,410

jobs uh in in the country. So you will become

200

00:16:05,410 --> 00:16:09,280

an electrical engineer a computer engineer,

201

00:16:09,280 --> 00:16:12,580

and that was kind of very very fashionable at the time.

202

00:16:12,580 --> 00:16:18,220

I think it still is, right? And even so that time I was like "okay I have this passion for

203

00:16:18,220 --> 00:16:22,540

physics and math. Would it be enough for me to become an engineer?

204

00:16:22,540 --> 00:16:26,530

I'm sure there are very challenging technical problems that I can

205

00:16:26,530 --> 00:16:30,730

I can tackle them in those fields. But is that really what I want to do?"

206

00:16:30,730 --> 00:16:37,465

And I decide to no.I want to go and get deep in physics, no matter what the future is and at

207

00:16:37,465 --> 00:16:43,960

the time my parents like my my teachers were like, "no, Just don't don't Don't ruin your

208

00:16:43,960 --> 00:16:50,350

future. You can have a good high paying jobs uh if you pick engineering and what do you want to

209

00:16:50,350 --> 00:16:53,950

be be as, as a physicist do you want to be a physics

210

00:16:53,950 --> 00:16:59,350

sort of high school teacher is that all you want?" I was like, I don't know what's going to

211

00:16:59,350 --> 00:17:05,250

happen in terms of like job and career, but all I know is that it wasn't enough like four

212

00:17:05,250 --> 00:17:10,470

years of physics in high school wasn't enough, so I want to do another four years at least.

213

00:17:10,470 --> 00:17:13,589

So I made the decisions and I don't regret it. I think

214

00:17:13,589 --> 00:17:17,520

maybe the first person actually believed in me and saw

215

00:17:17,520 --> 00:17:21,915

he was like, be happy as my father. I was like deep down he knew that

00:17:21,915 --> 00:17:26,609

I'm going to go as far as I can get because I'm very curious

217

00:17:26,609 --> 00:17:32,505

about this object. So it it sort of every step of the way when I had to make a decision it was

218

00:17:32,505 --> 00:17:35,880

like, "okay let me pick between physics and something that

219

00:17:35,880 --> 00:17:39,390

is not hundred percent physics" I would always speak physics.

220

00:17:39,390 --> 00:17:45,720

I don't think it's that problem is straight forward for everyone. It really depends on where you come from,

221

00:17:45,720 --> 00:17:50,640

what's the culture around you is like, who are the people that are influencing you.

222

00:17:50,640 --> 00:17:57,555

So no one person is the same in that kind of decision, but I would say I

223

00:17:57,555 --> 00:18:00,960

don't regret it. I'm happy that I'm here today.

224

00:18:00,960 --> 00:18:06,460

If I would go back, I think I would definitely make the same decisions.

225

00:18:06,460 --> 00:18:12,475

Were there like any obstacles or hurdles that you feel comfortable sharing that you had to

226

00:18:12,475 --> 00:18:16,240

overcome during your your career as a physicist?

```
227
```

00:18:16,240 --> 00:18:21,430

Yes, I think definitely coming to the US and like making that move, big move,

228

00:18:21,430 --> 00:18:25,480

was, was challenging. Right? So I was a person I

229

00:18:25,480 --> 00:18:29,530

was coming like, uh starting from a small town

230

00:18:29,530 --> 00:18:32,815

with a very sort of limited set of resources

231

00:18:32,815 --> 00:18:36,580

and connections really to the

232

00:18:36,580 --> 00:18:40,060

to the entire world. And then I went to college.

233

00:18:40,060 --> 00:18:44,260

It was a good university in the capital city is so like opens my eyes and like

234

00:18:44,260 --> 00:18:48,700

...I realized, all right it's possible to actually go

235

00:18:48,700 --> 00:18:55,240

outside the country and study of physics at the frontier, which was really what I wanted.

236

00:18:55,240 --> 00:18:58,840

I felt like a bit isolated. We had very good

237

00:18:58,840 --> 00:19:03,265

educational system. We had very good, um, instructors at the

00:19:03,265 --> 00:19:07,810

university, very passionate people, very caring.

239

00:19:07,810 --> 00:19:11,440

Um but it's still it wasn't enough. It felt like we were just like

240

00:19:11,440 --> 00:19:15,370

out there and to some degree watching

241

00:19:15,370 --> 00:19:20,980

and developments that are happening out there, that that are exciting.

242

00:19:20,980 --> 00:19:26,980

And until I went to college, I didn't realize that I could have the opportunity to actually do it.

243

00:19:26,980 --> 00:19:31,510

To be part of those developments, to be part of that progress.

244

00:19:31,510 --> 00:19:38,080

And...so I decided to make this big move. And again coming from back there on where I never

245

00:19:38,080 --> 00:19:41,680

had any travel outside the country until

246

00:19:41,680 --> 00:19:46,390

I was about to go out and come to the US on my own.

247

00:19:46,390 --> 00:19:51,505

And I study physics at graduate school. I mean I was a very active person, I was very

248

00:19:51,505 --> 00:19:58,330

outspoken, I was very kind of outgoing back in my country And when I came here because of

00:19:58,330 --> 00:20:03,190

language barrier and also the things I felt like I'm a different person now.

250

00:20:03,190 --> 00:20:07,780

I cannot quite communicate what I think, how I feel,

251

00:20:07,780 --> 00:20:13,630

what things should be. I have always a strong opinion about how things should look like and

252

00:20:13,630 --> 00:20:17,080

how to improve things and how to move forward.

253

00:20:17,080 --> 00:20:20,350

And I felt like in a first maybe couple of years in the

254

00:20:20,350 --> 00:20:24,490

US, as a graduate student, I didn't have that voice.

255

00:20:24,490 --> 00:20:27,940

I had a voice in my head. But like canceling

256

00:20:27,940 --> 00:20:31,900

A voice to an external voice that others can hear

257

00:20:31,900 --> 00:20:37,435

was difficult. And because part of it was culture, it doesn't just like enough to know

258

00:20:37,435 --> 00:20:41,920

English well, And you should have also understood

259

00:20:41,920 --> 00:20:48,040

the culture and how people act and feel and express themselves.

```
260
```

00:20:48,040 --> 00:20:51,520

So I think that was really the big challenge I was like, "how if I

261

00:20:51,520 --> 00:20:55,480

never recover myself how if that...as Zohreh."

262

00:20:55,480 --> 00:21:01,990

That's why it's in my past I just left it behind at home and I would never be the same person again.

263

00:21:01,990 --> 00:21:06,070

Because I did this this migration to the US.

264

00:21:06,070 --> 00:21:10,150

And fortunately that changed. I think part of the reason it changed was

265

00:21:10,150 --> 00:21:13,840

having good mentors, good people around you

266

00:21:13,840 --> 00:21:18,160

that give would give you the confidence and will believe in you.

267

00:21:18,160 --> 00:21:23,170

And despite the fact that you might not talk too much or communicate too much,

268

00:21:23,170 --> 00:21:27,220

they would understand that you have potentials and you're different

269

00:21:27,220 --> 00:21:32,080

and if you're given the opportunity you can shine. I hope that I could do that.

270

00:21:32,080 --> 00:21:35,710

I can't claim that if not, I was able to,

271

00:21:35,710 --> 00:21:39,610

to be um, who they wanted me to be.

272

00:21:39,610 --> 00:21:42,610

But I think it it was an interesting evolution.

273

00:21:42,610 --> 00:21:46,840

Every day I felt like I'm kind of coming out of

274

00:21:46,840 --> 00:21:51,520

that that sort of confined shell and be able to come make it better.

275

00:21:51,520 --> 00:21:57,730

And eventually it just took a few years. Like now halfway through through grad school I felt like

276

00:21:57,730 --> 00:22:01,870

okay, I was starting to become myself and have a voice

277

00:22:01,870 --> 00:22:07,360

and be able to accomplish things that I want. So just being patient

278

00:22:07,360 --> 00:22:14,350

and having good mentors and a good environment around you I think would allow you to, to

279

00:22:14,350 --> 00:22:18,280

face the challenges and hopefully come out a strong.

280

00:22:18,280 --> 00:22:22,210

Yeah Yeah. Yeah. That's great. Thank you for sharing.

281

00:22:22,210 --> 00:22:28,480

```
Do you feel that after living here that you opened up back to like the person that you said that
```

282 00:22:28,480 --> 00:22:32,440 you felt you were back in Iran or did you, would you say 283 00:22:32,440 --> 00:22:36,700 you can't evolve into an even like bigger, different person. 284 00:22:36,700 --> 00:22:40,360 Oh yeah absolutely. That's a very good question So 285 00:22:40,360 --> 00:22:44,050 definitely I feel like the person I am today 286 00:22:44,050 --> 00:22:48,760 would have been a different person If I had stayed in my country. 287 00:22:48,760 --> 00:22:53,620 Um I'm not saying in a good way or a bad way; it's just a different person. 288 00:22:53,620 --> 00:22:57,760 And um in terms of abilities 289 00:22:57,760 --> 00:23:04,420 to communicate, to accomplish, what they have in mind, to have the confidence in what I 290 00:23:04,420 --> 00:23:08,140 want to do to be a strong and be 291 00:23:08,140 --> 00:23:12,040 sort of wanting and desiring what you want. 292

00:23:12,040 --> 00:23:18,700

I think I'm probably more, I think I probably gained more just because part of it is really the

293

00:23:18,700 --> 00:23:24,460

challenge of being in this country for many years pretty much on your own

294

00:23:24,460 --> 00:23:29,110

and not being able to see your family. I had

295

00:23:29,110 --> 00:23:33,340

very interesting VISA issues because if I wanted to go

296

00:23:33,340 --> 00:23:38,140

back I had to reapply for VISA. It was like a single entry VISA to the US.

297

00:23:38,140 --> 00:23:41,740

As an Iranian citizen it was like, it's always a

298

00:23:41,740 --> 00:23:46,360

lengthy process to go through the VISA applications and trends.

299

00:23:46,360 --> 00:23:51,640

They wanted to do that during my grad school, so I chose to not go back.

300

00:23:51,640 --> 00:23:56,230

Um because of all of these sort of challenging Um situations.

301

00:23:56,230 --> 00:24:02,170

And it took seven years to be able to reunite with my family. I was very close with my family.

302

00:24:02,170 --> 00:24:08,350

Right? And I think as a result of all these sort of challenges

303

00:24:08,350 --> 00:24:12,670

and situations um we just become a different person. You just add

304

00:24:12,670 --> 00:24:17,740

develop appreciations for things that you took for granted before.

305

00:24:17,740 --> 00:24:21,040

Like family and having the support system.

306

00:24:21,040 --> 00:24:26,980

And and having people that look like you and think like you but also on the other hand is

307

00:24:26,980 --> 00:24:33,250

starting to develop appreciation for how having a different environment and

308

00:24:33,250 --> 00:24:36,490

diverse environments around you can

309

00:24:36,490 --> 00:24:42,850

make you to grow faster. So that was one of the things that really I think impacted

310

00:24:42,850 --> 00:24:49,720

me as a person in terms of personality and life perspectives to be in a

311

00:24:49,720 --> 00:24:53,275

country where everyone didn't look like me,

312

00:24:53,275 --> 00:24:57,130

everyone didn't speak like me or think like me.

313

00:24:57,130 --> 00:25:00,940

And it actually changed me in a very

314

00:25:00,940 --> 00:25:07,900

interesting and I think extraordinary ways and that's I'm proud of, and I think

315

00:25:07,900 --> 00:25:13,450

that's really, at the end of the day I would say it was worth it

316

00:25:13,450 --> 00:25:17,260

to come to this country and face these challenges.

317

00:25:17,260 --> 00:25:21,235

Thank you for for sharing this really great to hear. We talked a lot about

318

00:25:21,235 --> 00:25:25,480

your experiences as a physicist and, and working in the lab.

319

00:25:25,480 --> 00:25:30,820

I'm curious what, you know your life outside of physics where is there any interest or hobbies

320

00:25:30,820 --> 00:25:34,930

that you have when you when you need a break from from work?

321

00:25:34,930 --> 00:25:41,260

Okay. So I got to say as an assistant professor, I don't have much free time.

322

00:25:41,260 --> 00:25:46,360

I am not saying that to kind of make yet you guys afraid of pursuing this

323

00:25:46,360 --> 00:25:52,420

kind of academy to job, but it's really a bigger responsibility. Becoming a professor at the

324

00:25:52,420 --> 00:25:56,650

university was probably the biggest transition in terms of

325

00:25:56,650 --> 00:26:00,580

going through this academy staircase.

326

00:26:00,580 --> 00:26:04,210

It wasn't really the sort of the, the biggest job for me.

327

00:26:04,210 --> 00:26:10,840

Not that I wasn't quite independent before, I was like in terms of my research capabilities

328

00:26:10,840 --> 00:26:17,500

and thinking I, I think I was independent, but in terms of like coming to

329

00:26:17,500 --> 00:26:23,980

this job, and having to handle multiple aspects of an

330

00:26:23,980 --> 00:26:28,660

academy position at the same time that I didn't have to deal with before.

331

00:26:28,660 --> 00:26:35,350

It was an interesting transition and I had to do teaching and advising and be in

332

00:26:35,350 --> 00:26:42,280

charge of things and make my own decisions for, for the group and funding and communicating

333

00:26:42,280 --> 00:26:47,170

with my colleagues and make keep taking part in the decision-making process

334

00:26:47,170 --> 00:26:51,010

in the department in the community. And be

335

00:26:51,010 --> 00:26:56,020

...a valuable member and helpful member to the bigger

336

00:26:56,020 --> 00:27:00,445

scientific community. All of these kind of sort of happen

337

00:27:00,445 --> 00:27:05,020

as you got this title that now you're an assistant professor.

338

00:27:05,020 --> 00:27:10,780

And so it leaves little time and kind of, I miss still going through this process of

339

00:27:10,780 --> 00:27:15,010

understanding sort of maximizing and making things

340

00:27:15,010 --> 00:27:19,870

more efficient in terms of the time that in end of the day I can have for me.

341

00:27:19,870 --> 00:27:26,380

After spend with family and friends, but sort of really, as soon as I have any time left

342

00:27:26,380 --> 00:27:29,980

that that is not my job. I would want to talk to

343

00:27:29,980 --> 00:27:33,700

my family and friends and catch up with them.

344

00:27:33,700 --> 00:27:37,360

I think maybe at some point things get a little easier and

345

00:27:37,360 --> 00:27:41,110

I would have time for other fun activities.

346

00:27:41,110 --> 00:27:47,815

But I think at this point, if whenever I have some free time it's like, okay I'm missing out

347

00:27:47,815 --> 00:27:52,390

on for example talking to my parents or maybe helping out my

348

00:27:52,390 --> 00:27:57,070

siblings, my younger siblings, that need advice on different things.

349

00:27:57,070 --> 00:28:02,350

So I try to kind of make sure that that social aspect of my life is not compromised

350

00:28:02,350 --> 00:28:08,980

because I worked too much. But I can't really claim that I've been perfect I'm sure if you asked my friends

351

00:28:08,980 --> 00:28:15,400

and they would not be happy. About how, how available I am but I'm just being my best and I

352

00:28:15,400 --> 00:28:20,695

think at the moment, that's the most important thing for me that's really at the top of my list

353

00:28:20,695 --> 00:28:25,060

to not be disconnected from people that I care about

354

00:28:25,060 --> 00:28:29,170

given how busy and occupied I am with this job.

355

00:28:29,170 --> 00:28:34,630

Can you explain sort of what a typical day or a week may look like with all your different

356

00:28:34,630 --> 00:28:38,350

responsibilities in this position? Yes, it depends on what kind

357

00:28:38,350 --> 00:28:42,100

of deadlines I have...For various things.

358

00:28:42.100 --> 00:28:48.250

No single week is the same as the next week because every day comes with its own sort

359

00:28:48,250 --> 00:28:53,020

of uh, plannings and different things that had to be taken care of.

360

00:28:53,020 --> 00:28:58,930

But really I loved the weeks that I really enjoy are the ones that I can sort of strip out all

361

00:28:58,930 --> 00:29:01,990

these other activities and take care of them as quickly

362

00:29:01,990 --> 00:29:08,440

possible and do research. There are weeks that it's less possible, there are weeks that

363

00:29:08,440 --> 00:29:13,960

I can do that. Um particularly during the summertime it's pretty nice because you get to

364

00:29:13,960 --> 00:29:20,170

actually spend more time with your group and also travel. If it's not during the pandemic you can

365

00:29:20,170 --> 00:29:25,900

travel to places and talk to you to your collaborators and to the community and understand what's

366

00:29:25,900 --> 00:29:32,410

what's new and what's going on. And I also do research and like sit down and actually write

367

00:29:32,410 --> 00:29:37,360

down all these ideas and thinkings that you've had during the semester And you didn't have

368

00:29:37,360 --> 00:29:41,770

enough time to develop them and put them in in a paper.

00:29:41,770 --> 00:29:46,570

It's kind of a good time to do that. So because we're in summer I saw that I talk about the

370

00:29:46,570 --> 00:29:53,560

summer time, but still in the summer there are other other...commitments and responsibilities.

371

00:29:53,560 --> 00:29:59,530

If you asked me about my next week, I'm dealing three lectures in in one summer school.

372

00:29:59,530 --> 00:30:03,610

I'm on the PhD defense committee Uh to to excellent

373

00:30:03,610 --> 00:30:10,210

students here at the UMD. I look forward to that and I'm sort of going through reading their physics.

374

00:30:10,210 --> 00:30:16,120

And I have multiple meetings with my group members because we're all pushing very interesting

375

00:30:16,120 --> 00:30:20,200

projects, and I am always excited to hear what

376

00:30:20,200 --> 00:30:25,090

happened. What, what the step that we thought would be useful? Did it work?

377

00:30:25,090 --> 00:30:28,960

Uh so that's really the fun part of it. And the most fun of

378

00:30:28,960 --> 00:30:33,070

that is when I get time to actually sit down and doing my stuff.

379

00:30:33,070 --> 00:30:38,740

As opposed to, uh, give it to my group members, of course I enjoy then,

380

00:30:38,740 --> 00:30:45,130

Um when they do this and they they make progress, but as a physicist always deep down,

381

00:30:45,130 --> 00:30:51,730

it's like okay I need to also sit down and do this calculation or write this piece of code or,

382

00:30:51,730 --> 00:30:57,610

or work it out and like work out an example for myself and understand really what's going on.

383

00:30:57,610 --> 00:31:02,650

And that's really the joy that you get by sitting down

384

00:31:02.650 --> 00:31:05,770

and doing this kind of problems yourself. So

385

00:31:05,770 --> 00:31:12,670

what I'm trying to not become...is someone that...just sits back and

386

00:31:12,670 --> 00:31:17,020

manages a research group. I hope that doesn't happen.

387

00:31:17,020 --> 00:31:22,900

And what I'm trying to make sure is that I still have time for myself.

388

00:31:22,900 --> 00:31:27,910

And what that means is that as a theoretical physicist I would still have time

389

00:31:27,910 --> 00:31:31,900

to sit and work things out Um on my own.

390

00:31:31,900 --> 00:31:37,690

```
And so we'll we'll see...Busy. There's just a lot going on.
391
```

Yes. Yes indeed. Every week.

00:31:37,690 --> 00:31:41,230

392

00:31:41,230 --> 00:31:46,090

There is no exception. So kind of wrapping things up a little bit I guess,

393

00:31:46,090 --> 00:31:53,020

I'm I'm curious. Do you have any advice or tips of wisdoms for...maybe students who are

394

00:31:53,020 --> 00:31:58,780

thinking about being physicists or may want to be physicists you know going forward?

395

00:31:58,780 --> 00:32:05,530

Yeah absolutely. So I think that there are two two aspects to figuring out that that you want to

396

00:32:05,530 --> 00:32:09,280

be a physicist. First is to get educated. If you don't

397

00:32:09,280 --> 00:32:13,660

know what's going on at the forefront of physics research,

398

00:32:13,660 --> 00:32:16,990

you should not expect yourself to know whether you

399

00:32:16,990 --> 00:32:20,890

want to be in this this field you want to pick this career.

400

00:32:20,890 --> 00:32:27,490

So get educated, take as many courses as you can, go to as many talks as you can,

401

00:32:27,490 --> 00:32:32,440

talk to as many people that are excited to talk about their work with you.

402

00:32:32,440 --> 00:32:37,780

That's very important. Just like sitting back and watching from afar.

403

00:32:37,780 --> 00:32:41,980

That would not do. You have to actually be actively sort of

404

00:32:41,980 --> 00:32:47,140

absorbing the information to be able to know for sure

405

00:32:47,140 --> 00:32:51,700

whether you are made for this field, whether you feel happy

406

00:32:51,700 --> 00:32:57,850

to spend the rest of your career doing this kind of problems. So that's number one.

407

00:32:57,850 --> 00:33:02,020

And then number two is to kind of related

408

00:33:02,020 --> 00:33:06,940

to number one get your hands dirty. Do research as soon as you can.

409

00:33:06,940 --> 00:33:12,220

This was not something that we uh during my education was that common.

410

00:33:12,220 --> 00:33:15,430

But it's becoming more and more common, and I think it's useful.

411

00:33:15,430 --> 00:33:19,345

It's useful as long as you do not compromise getting that sort of

412

00:33:19,345 --> 00:33:24,310

basic minimum requirements for in terms of like physics education

413

00:33:24,310 --> 00:33:28,990

and learning about all these advanced topics you should never compromise that because you want

414

00:33:28,990 --> 00:33:35,620

to just do research without having that sort of theory and some foundational background,

415

00:33:35,620 --> 00:33:41,170

you will not be a good physicist whether in experiment or theory. So that part don't compromise.

416

00:33:41,170 --> 00:33:46,780

But once you have that under control, get into research as soon as possible. Talk to faculty

417

00:33:46,780 --> 00:33:53,290

members. See, um and then to try to do both types of research. Don't, don't limit yourself to

418

00:33:53,290 --> 00:33:57,670

what you think that you're made for, because until you actually don't

419

00:33:57,670 --> 00:34:02,650

do other different things and gain experience, you wouldn't know, right?

420

00:34:02,650 --> 00:34:08,290

I never did experimental research. Maybe I would have been good for it, but I didn't try, and

421

00:34:08,290 --> 00:34:12,114

there wasn't enough opportunities or resources for me at the

422

00:34:12,114 --> 00:34:16,570

time that I was growing as a physicist before I come to the US

423

00:34:16.570 --> 00:34:22.239

to try experimental research. But who knows? Maybe if I had the opportunity I would have

424

00:34:22,239 --> 00:34:26,050

actually enjoyed it. And in fact when I came to the US

425

00:34:26,050 --> 00:34:29,620

I started to realize so much exciting and

426

00:34:29,620 --> 00:34:33,489

stuff are going on on the experimental front here.

427

00:34:33,489 --> 00:34:39,460

I started to develop a lot of appreciation for for this field. And now I work with them very

428

00:34:39,460 --> 00:34:42,940

closely on this quantum simulation research.

429

00:34:42,940 --> 00:34:46,780

And um so that's very important. That's just don't limit

430

00:34:46,780 --> 00:34:53,770

yourself within certain boundaries because you don't have...the perspective, the vision

431

00:34:53,770 --> 00:34:58,180

as someone who's just starting to know what's out there

432

00:34:58,180 --> 00:35:02,740

and decide. You're not in a position to decide your entire career,

433

00:35:02,740 --> 00:35:10,030

your entire career as a physicist right now, unless you expand your your horizon and then look

434

00:35:10.030 --> 00:35:15.880

at different places and diversify. So just do a little bit of research here and there to get a

435

00:35:15,880 --> 00:35:22,795

taste of what it takes to do every kind of research from formal and theory to numerical

436

00:35:22,795 --> 00:35:25,930

to experimental to observational.

437

00:35:25,930 --> 00:35:30,070

Um it's hard to do all of these at the same time but maybe pick one

438

00:35:30,070 --> 00:35:34,660

and two that are more closer to your heart

439

00:35:34,660 --> 00:35:41,050

and then see how it goes. And during undergrad or the later years of undergrad, I think that's

440

00:35:41,050 --> 00:35:44,800

the best time to start asking these questions.

441

00:35:44,800 --> 00:35:48,400

That's really great advice. Thank you for sharing.

442

00:35:48,400 --> 00:35:53,830

Thank you for coming on and doing this. So, it was a lot of fun talking with you And getting to learn about you.

443

00:35:53,830 --> 00:35:58,000

Of course, it was very fun for myself as well. I hope that these points

444

00:35:58,000 --> 00:36:02,468

would be helpful to every student out there.