

A Modular Approach To The App

Inventor Projects View

Modernising and modularising the App Inventor Projects View by

introducing shortcuts for project actions and integrating markup UI

declarations with standardised design systems

MIT App Inventor
Google Summer of Code 2021

Vishwas Adiga
vishwasadiga@gmail.com

Full application at gsoc-21.vishwasadiga.me

mailto:vishwasadiga@gmail.com
https://gsoc-21.vishwasadiga.me

Abstract

The App Inventor front-end, a subset of the larger appinventor-sources

monorepo, is a complex and dynamic code-base written almost entirely in GWT (Google

Web Toolkit). Alongside the Blockly editor sources, it handles everything that the end

user can see and interact with — from dragging and dropping components to creating

and deleting projects. The intricate symphony of a multitude of listeners and handlers

enables App Inventor to provide a functional online development environment and

hence democratise mobile app development.

However, as the project has grown, it has become increasingly more complex to

add new features to the front-end. With every widget dependent on every other in some

form or the other, an ideal separation of concerns has become difficult to ascertain. In

addition, the introduction of each new feature has brought along with it a slightly

different widget design than the standard, eventually racking up several design

inconsistencies and workflow redundancies.

This project proposes to revamp the Projects View of the App Inventor interface

and introduce shortcuts for essential project actions. The aim is to have a modern,

modular, and fully functional user interface that leverages the latest advances in markup

UI declarations, design systems, and accessibility to deliver an improved look and feel

to App Inventor users. By making use of strong design pillars, the proposal intends to

streamline app development workflows and ensure an enjoyable and accessible

experience to all stakeholders and users.

Full application at gsoc-21.vishwasadiga.me

https://gsoc-21.vishwasadiga.me

Project Description and Objectives

The Projects View is a major component of the App Inventor front-end that

handles all actions related to user projects. It is also the first view that the user sees

when visiting App Inventor, and is thus effectively an entry point to the development

experience. Hence, it is imperative to provide a usable, equitable, and efficient interface

that sets the tone for what the user can expect as they dive further into the Online

Development Environment (ODE).

One of the primary goals of the project is to modularise the Projects View and

have it be a standalone bundle that can be used independently. This would enable

easier debugging and addition of new features. Furthermore, a modular system would

introduce stronger separation of concerns in the code-base and allow new external

contributors to get started quicker than ever before. By leveraging GWT’s Lazy Loading

and module splitting features, the project aims to improve load times and reduce the

bundle size of each module. A similar approach can then be taken for other parts of the

App Inventor front-end to further modularise the code-base.

Another objective of the project is to ease access to project actions (e.g., create

& delete projects, export AIA and APK/AAB) by placing them closer to each project item

in the projects list. By extension, a user should also be able to batch these actions, thus

affecting multiple projects at once. These changes will streamline project workflows,

especially benefiting stakeholders like educators who often deal with multiple projects

at once. Project imports are also slated to be improved, with abilities to auto-rename

files with conflicting names.

Finally, this project aims to overhaul the Projects View and bring it up to modern

accessibility and design standards. A fresher look for the interface would go a long way

in providing an enjoyable development experience to users. The findings and work done

Full application at gsoc-21.vishwasadiga.me

https://gsoc-21.vishwasadiga.me

in this project can also be extrapolated to the entire App Inventor front-end, thus

ensuring a uniform user interface, thereby easing the learning curve.

Full application at gsoc-21.vishwasadiga.me

https://gsoc-21.vishwasadiga.me

Design Pillars

Design pillars are fundamental rules that set the tone for how the project should

proceed and be implemented. They provide a filter for ideas and a tenet to weigh design

decisions against. A few design pillars that would help set the tone for future discussion

are

●​ Accessibility and clarity​

All proposed ideas and interfaces must be accessible to individuals with

disabilities.

●​ Control​

The user must always be in control of their experience with App Inventor.

●​ Standardisation​

Widgets must be standard; both among other widgets of the same kind and

among similar widgets across the internet.

●​ Brand​

Ideas and interfaces must reflect and promote the ethos of the App Inventor

project.

Full application at gsoc-21.vishwasadiga.me

https://gsoc-21.vishwasadiga.me

Implementation

The first step to implementing the new Projects View would be to gather

feedback on how users currently make use of the projects panel. Input from the

Community and other major stakeholders would pave the way for an initial

understanding of the fundamental changes required. Wireframes and low-fidelity

mockups can then be created to solicit further feedback.

With the overall layout of the new Projects View ready, work can begin on

implementing the interface in GWT. UiBinder1 would be the preferred medium of

implementation, considering its close semblance to JSX syntax given App Inventor’s

plan to transition to a React-like markup in the long run. UiBinder would also greatly

simplify the DOM and ease inspection and UI testing.

For example, a project list item can be written in markup as:

<ui:UiBinder xmlns:ui='urn:ui:com.google.gwt.uibinder'
 xmlns:g='urn:import:com.google.gwt.user.client.ui'>
 <g:HorizontalPanel>
 <!-- Name -->
 <g:Label>MyProject</g:Label>
 <!-- Date created -->
 <g:Label>Apr 8, 2021, 1:59:20 AM</g:Label>
 <!-- Date modified -->
 <g:Label>Apr 8, 2021, 2:14:57 AM</g:Label>
 <!-- Shortcuts -->
 <g:Button ui:field=’downloadBtn’>Download .AIA</g:Button>
 <g:Button>Export .APK</g:Button>
 </g:HorizontalPanel>
</ui:UiBinder>

1 http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html

Full application at gsoc-21.vishwasadiga.me

http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html
https://gsoc-21.vishwasadiga.me

These widgets can then be bound to their respective events in the class that builds the

UI, as demonstrated:

public class ProjectsList extends Composite {
 // create reference to button as declared in XML
 // this will automatically be linked to the button
 // object when the UI is built.
 @UiField Button downloadBtn;

 @UiHandler("downloadBtn")
 private void handleClick(ClickEvent e) {
 // fetch .AIA using ProjectService and trigger link
 }
}

This approach to handling events greatly simplifies the front-end and keeps the code

DRY.

In conjunction with a design system or an optional CSS framework, it would also

be possible to implement scoped styles2, thus eliminating the need to maintain a single

resource like Ya.css.

<ui:UiBinder xmlns:ui='urn:ui:com.google.gwt.uibinder'
 xmlns:g='urn:import:com.google.gwt.user.client.ui'>
 <ui:style field='liStyles' src="ProjectListItem.css">
 <g:HorizontalPanel>
 <!-- Name -->
 <g:Label
 class='{liStyles.projectLabel}'>
 MyProject
 </g:Label>
 </g:HorizontalPanel>
</ui:UiBinder>

2 http://www.gwtproject.org/javadoc/latest/com/google/gwt/resources/client/CssResource.html

Full application at gsoc-21.vishwasadiga.me

http://www.gwtproject.org/javadoc/latest/com/google/gwt/resources/client/CssResource.html
https://gsoc-21.vishwasadiga.me

ProjectListItem.css can thus be its own CSS file that can be managed

independently of other stylesheets.

Alternatively, a CSS framework like TailwindCSS3 can be used alongside scoped

stylesheets to leverage standardised style declarations, as shown:

<ui:UiBinder xmlns:ui='urn:ui:com.google.gwt.uibinder'
 xmlns:g='urn:import:com.google.gwt.user.client.ui'>
 <g:HorizontalPanel>
 <!-- Name -->
 <g:Label class='text-lg font-bold'>
 MyProject
 </g:Label>
 </g:HorizontalPanel>
</ui:UiBinder>

​ With these requirements considered, it is reasonable to envision the source code

laid out in the following file structure:

●​ appengine/src/.../client/views/
○​ This directory will house all modular views, including the proposed

Projects View.
○​ Having the new view be placed high in the package tree would be

beneficial in ensuring complete separation between modules, especially in
the long run​

●​ appengine/src/.../client/views/projects
○​ This is where all files pertaining to the modular Projects View will reside.
○​ It should be noted that none of the files in this package should be used

elsewhere except the composition class that is used to instantiate the UI
lazily.​

●​ appengine/src/.../client/views/projects/ProjectsView.ui.xml
○​ This file will contain UI declarations in markup.​

●​ appengine/src/.../client/views/projects/ProjectsView.java

○​ This file will accompany the XML declarations and manipulate views that
have been declared.

○​ Event handlers, fetch operations, and other business logic will go here.​

3 https://tailwindcss.com/

Full application at gsoc-21.vishwasadiga.me

https://tailwindcss.com/
https://gsoc-21.vishwasadiga.me

●​ appengine/src/.../client/views/projects/styles.css
●​ appengine/war/static/projects/styles.css

○​ The styles pertaining to the proposed module is to go in either of these
files.

○​ While GWT recommends the former, it may be more appropriate to go with
the latter given App Inventor’s pre-existing stylesheet file structure.

From a technical perspective, work will need to be done on integrating project

folders into the interface in a way that is intuitive and accessible. In addition,

optimisations and memoisations will have to be made when providing shortcuts for

project actions. For example, a request to export an APK should return a pre-built binary

if no changes were made to the project since the last build4. The timestamp of the last

save or an equivalent function that takes the AIA as a parameter is ideal to check for

any changes in the project.

Some of the changes needed to make this work are:

ServerLayout.java​
A new server endpoint will have to be added that will enable handling multiple
APK/AAB exports

public static final String DOWNLOAD_SELECTED_PROJECTS_OUTPUT =
"selected-projects-output";

FileExporter.java​
A new method is required that will iterate over selected projects and return a zipped
file. This will work similar to FileExporter::exportSelectedProjectsSourceZip

ProjectSourceZip exportSelectedProjectsOutputFile(String
userId, List<Long> projectIds, @Nullable String target)
 throws IOException;

DownloadServlet.java​
A subroutine that will invoke the newly defined FileExporter method if multiple APK
exports are requested needs to be added

4 https://community.appinventor.mit.edu/t/shortcuts-for-project-actions-project/5643/2

Full application at gsoc-21.vishwasadiga.me

https://github.com/mit-cml/appinventor-sources/blob/master/appinventor/appengine/src/com/google/appinventor/shared/rpc/ServerLayout.java
https://github.com/mit-cml/appinventor-sources/blob/master/appinventor/appengine/src/com/google/appinventor/server/FileExporter.java
https://github.com/mit-cml/appinventor-sources/blob/master/appinventor/appengine/src/com/google/appinventor/server/DownloadServlet.java
https://community.appinventor.mit.edu/t/shortcuts-for-project-actions-project/5643/2
https://gsoc-21.vishwasadiga.me

UserProject.java​
A new field (and corresponding setter/getters) will have to be added that stores the
timestamp of the last build.
It may be more appropriate to have separate timestamps for different build types
(perhaps in an extensible manner using a Map) that can accommodate future build
targets like iOS

private long lastBuildDate;

In the “export selected” button handler in the new Projects View, a check will have to
be added that compares the last modified and last built timestamps of each project,
and requests a build if the built binary is stale.

if(userProject.getDateModified() > userProject.getDateBuilt())
{
 // call BuildCommand build chain
 // further discussion required on making this async/calling
 // multiple builds at once

 // a progress dialog can also be shown at this stage
 // to provide clarity and context to users
} else {
 // skip building for this project (i.e., do nothing)
}

This exercise would also provide ample opportunity to implement auto-renaming

of projects with conflicting names5, thus greatly aiding educators and other users who

often deal with multiple files with possibly same names. An initial implementation

would involve tweaking the ProjectUploadWizard to intelligently handle conflicting

names. Similar changes will have to be made to HTML5DragDrop.java and its

corresponding JavaScript file to mimic the same behaviour when importing projects via

DnD.

5 https://github.com/mit-cml/appinventor-sources/issues/2453

Full application at gsoc-21.vishwasadiga.me

https://github.com/mit-cml/appinventor-sources/blob/master/appinventor/appengine/src/com/google/appinventor/shared/rpc/project/UserProject.java
https://github.com/mit-cml/appinventor-sources/blob/e97f147065a9c0440ed54e65025a565d11164b58/appinventor/appengine/src/com/google/appinventor/client/TopToolbar.java#L554
https://github.com/mit-cml/appinventor-sources/blob/master/appinventor/appengine/src/com/google/appinventor/client/utils/HTML5DragDrop.java
https://github.com/mit-cml/appinventor-sources/issues/2453
https://gsoc-21.vishwasadiga.me

UserProject.java

while(!TextValidators.checkNewProjectName(filename)) {
 filename += UNIQUE_IFIER;
}

In addition, project memos6 can be integrated into the new projects list, thus

enabling users to add app-wide notes to their work. This can be implemented by adding

a new ProjectProperty7 that holds the memo string.

Because the new view is going to be independent of other modules, it can be

separated into its own bundle and loaded lazily as and when required. This would also

set the groundwork for further modularisation of the interface. GWT’s lazy loading8 and

module splitting capabilities can be leveraged for this purpose.

Finally, an option would have to be implemented, preferably in the settings

drop-down, to let users opt-in to the new interface. This would give stakeholders the

flexibility to switch per their own convenience and pace. This would ideally be in the

form of a new UserSetting that would hold a Simple True/False flag indicating the user’s

preference.

TopToolbar.java::createSettingsMenu
Add a new setting menu item. This setting can be used for all UI modularisations that
may be made in the future. Alternatively, separate settings could be provided for each
view that is refactored

if (Ode.getUserNewInterface()) {//as fetched from a UserSetting
 settingsItems.add(
 new DropDownItem(WIDGET_NAME_NEW_INTERFACE,
 MESSAGES.switchToOldInterface(),
 new SetOldInterfaceAction()));
} else {
 settingsItems.add(
 new DropDownItem(WIDGET_NAME_NEW_INTERFACE,

8 http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html#Lazy
7 https://github.com/mit-cml/appinventor/appengine/.../shared/settings/SettingsConstants.java
6 https://github.com/mit-cml/appinventor-sources/issues/1172

Full application at gsoc-21.vishwasadiga.me

https://github.com/mit-cml/appinventor-sources/blob/e97f147065a9c0440ed54e65025a565d11164b58/appinventor/appengine/src/com/google/appinventor/client/wizards/ProjectUploadWizard.java#L61
https://github.com/mit-cml/appinventor-sources/blob/e97f147065a9c0440ed54e65025a565d11164b58/appinventor/appengine/src/com/google/appinventor/client/TopToolbar.java#L331
http://www.gwtproject.org/doc/latest/DevGuideUiBinder.html#Lazy
https://github.com/mit-cml/appinventor-sources/blob/master/appinventor/appengine/src/com/google/appinventor/shared/settings/SettingsConstants.java
https://github.com/mit-cml/appinventor-sources/issues/1172
https://gsoc-21.vishwasadiga.me

 MESSAGES.switchToNewInterface(),
 new SetNewInterfaceAction()));
}

Building on the design pillar to provide control to the user, it is reasonable to have a flag

that lets owners and operators of App Inventor’s forks decide whether they would like to

provide multiple APK exports from the projects list. Technical constraints could hinder

some systems from handling a surge in buildserver requests, and the option to disable

the feature would help greatly in easing server traffic. A sample implementation would

look like:

AppInventorFeatures.java​
A new flag that allows for enabling/disabling of multiple project exports from the new
Projects View

public static boolean allowMultipleProjectExports() {
 return true;
}

Full application at gsoc-21.vishwasadiga.me

https://github.com/mit-cml/appinventor-sources/blob/master/appinventor/common/src/com/google/appinventor/common/version/AppInventorFeatures.java
https://gsoc-21.vishwasadiga.me

Deliverables

The project aims to deliver a modular, new Projects View that integrates

shortcuts for most used actions and a standard, modern design. This new interface will

be implemented as an opt-in alongside the current interface9 to ensure interoperability

with existing App Inventor curricula and learning resources.

If time permits, the project aims to expand the process of modularisation and

standardisation of the interface to other parts of the front-end. This would be

accompanied by applying the same design changes to all of the UI, thus ensuring a

standard experience across views.

9
https://community.appinventor.mit.edu/t/question-regarding-the-shortcuts-for-project-actions-proposal/2
9867/2

Full application at gsoc-21.vishwasadiga.me

https://community.appinventor.mit.edu/t/question-regarding-the-shortcuts-for-project-actions-proposal/29867/2
https://community.appinventor.mit.edu/t/question-regarding-the-shortcuts-for-project-actions-proposal/29867/2
https://gsoc-21.vishwasadiga.me

Timeline

May 17, 2021 - June 7, 2021 Wireframing, making mock-ups, and developing design
systems in consultation with the Community

June 8, 2021 - June 21, 2021 Research best implementation pathway, conduct
technological feasibility studies and finalise look and
feel of new interface

June 22, 2021 - July 26, 2021 Implementation of the new Projects View

July 27, 2021 - August 8,
2021

Testing based on Community feedback and
refinements

August 9, 2021 - August 15,
2021

Buffer week to account for last minute changes and
the unexpected

August 16, 2021 Final submission

Full application at gsoc-21.vishwasadiga.me

https://gsoc-21.vishwasadiga.me

	
	
	
	A Modular Approach To The App Inventor Projects View
	

	Abstract
	Project Description and Objectives
	Design Pillars
	Implementation
	
	Deliverables
	
	Timeline

