Kakuro Helper V01

Background
Sample Puzzle

Input Format
Sample CSV Text

The Designer
The Board GUI

Label Attributes
Button Attributes

Global Variables and Data Structures

Button and Label Management Structures
label table
button_table
Game Loading Structures
Game play structures
ame
game_history
Cell ID calculation
cell_id

Processing
Screen1.lnitialize

collect labels
collect_buttons
build 2d board
collect_cell_buttons

cell_buttons
collect_hars
clear _hars
clear_buttons
clear_labels

Game Loading
when File1.gotText

collect Hsum_cells
collect Vsum cells

Global range_cells

Global range_sums
Collect_sums
Emit_sums

display _game
display_button

display label
lash_and | |

Z2
blanks
Game Play
when_Button_r lick
handle_button
global selected r_c
Get_button

Handle digit
Selected_r

Selected ¢
Handl lection
Replace_cell
Push
Validate _sums
Cell_id
Collect_parents

Range_is_valid
Collect children

m_of cell
values of cells

Game_cell
Row_of cell
|_of cell
Duplicates
Paint_buttons
Global invalid_ranges

| | invalid ran
Collect invalid cells

Menu Buttons
When btnBack Clicked
Resume

When btnClear Clicked
When btnUndo Clicked
Pop
Display_validated game
Validate_all_sums
Gallery link
Other projects

Background

The New York Sunday News carries a Hidato Puzzle in its comic section. This app is meant to
help solve the puzzle. This app lets you solve the puzzle, with Undo/Redo capability and error
checking. Because of its size, special care needs to be taken in the Blocks Editor to keep
everything collapsed, and to use a device or GenyMotion for testing. It's too big for the MIT Ai2
emulator.

Sample Puzzle

Kakuro is played on a 12 row by 10 column grid of black and white cells. The black cells
contain target sums for the white cells immediately to their right and below them. The white
cells start out empty, for the players to fill with numbers in the range 1 to 9. No duplicates are
allowed in any vertical or horizontal range.

20 Genymotion for personal use - Custom Phone - 44... — This sample puzzle has almost
totally been solved, except for the
vertical range of red cells in the
lower right, which though it adds

A\ \ \ \ \ \ \ \
10N 19\ LAt \ \O13% 16\

N8 7 9 3 'y N1z B 9

\ 16\ \ up to 16, contains duplicate 7’s.
\20 2 8 1 9 \25 5 7

\ S In the original puzzles, the black
B ' 2N ° ‘4 . cells are drawn with white number
Xk %3 9 1 2 "\ o sums on a black background,

V9N 3 177\ separated by a white diagonal line.
7 4 1 2 \30 8 9 7
\\7 5 2 EEm ;\ 6 8 NN This implementation uses labels

\ B\ 5% for the black cells, with black
\ 22 9 7 1 5 20 4 letters on a light grey background

A e for readability. The diagonal line is
B 4 T3 9 1 simulated by two ‘\' characters,
I O 7 oomllE 1 8 s spaces, a line feed \n character,

\ 12\ 16N 13\ and a monospace font that just fits
\34 5 8 4 7 \{1 3 5 two lines per cell.

. -)5 GameD3.csv - Microsoft Excel =
i i ® - T X
'—H_ﬁ Ir,s.a_ll't Pagﬂﬂyout For'm.u|las ["LiIF Rﬁw Vﬁ "

Input Format

| H LN L i | (0] =
P A B c D £ F G H i] K E Because of the grid nature of

1 (10000 11000 11900 10400 10000 10000 11300 11600 10000 10000 this game, it's easy to enter

2 |10019 0 0 0 11600 10017] 0 13900 10500 puzzles through a spreadsheet
3 |10020 0 0 0 0 12925 0 0 0 0

4 10003 0 011110 0 01000011606 0O 0O program. However, the black
5 [10000 10900 13112 0 0 0 11717 0 0 10000 cells pose a problem: how to

‘ .

00y 0 8] 104% 26 2O 9 9100 keep two numbers in one cell?
7 |10007 0 0 10817 0 0 0 10505 0 0

8 |10000 10022 0] 0 0 12020 0 0 i}

9 |10000 11405 0 0 10013 0 0 0 10700 11600 Because the white cells must
10 | 10016 0 0 11200 11609 0 0 11311 0 o

contain unique numbers in the
range 1 to 9, the sum of any
range can’t exceed 45
(1+2+...+9). If we express all
range sums as two digit
numbers, we can combine a
vertical range sum VV and a
horizontal range sum HH as the number 1VVHH, like in this Game03.csv Excel file, which was
used to load the preceding example. White cells start out with a value of 0. The leading ‘1’ in
the black cells is necessary to distinguish between a black cell with two blank range values
(10000) and an empty white cell (0). This lets us use numeric input for all cells.

=
[y

10024 0 0 0 0 10011 0 0 0 o
10000 10000 10017 0 0 10000 10017 0 0 i)

=

=
w

14 dama'n g
4+ b GameD3 <2 4 | I mIE
Average: 4553 Count: 120 Sum: 546360 [EEEETNe o

Sample CSV Text
This is how Game03.csv looks after being exported from a spreadsheet program in csv format...

10000,11000,11900,10400,10000,10000,11300,11600,10000,10000
10019,0,0,0,11600,10017,0,0,13900,10500
10020,0,0,0,0,12925,0,0,0,0
10003,0,0,11110,0,0,10000,11606,0,0
10000,10900,13112,0,0,0,11717,0,0,10000
10007,0,0,0,10430,0,0,0,0,11000
10007,0,0,10817,0,0,0,10505,0,0
10000,10022,0,0,0,0,12020,0,0,0
10000,11405,0,0,10013,0,0,0,10700,11600
10016,0,0,11200,11609,0,0,11311,0,0
10024,0,0,0,0,10011,0,0,0,0
10000,10000,10017,0,0,10000,10017,0,0,0

The Designer

- o
72 MIT App Inventor 2 x
L C [ai2.appinventor.mit.edu/#5675293057482752 (@] =
£ Apps 7 MIT App Inventor2 22 GOG.com 1 Gmail ¥ahoo! (] App Inventor [0 TouchDevelop @y Google Docs M Gmail 2 TV i Dilbert (@) AFAQWiki % homes.csiwashingto.. [Other bookmarks
o ‘.‘ Ll Lo D 2 Projects~ Connectr Build~ Help~ MyProjects Gallery Guide Reportanissue English+ agetzler@gmail.com «
sy Beta
Screent - | Add Screen.. | Remove Screen Designer | Blocks

Palette Viewer Components Properties
User Interface Display hidden components in Viewe: B | |screenl Screenl
Button B 9:48 varMenu AboutScreen
TextBox (Sl = Listview1)
—_ X B harBoard
= ListView G p) AlignHerizonta
& varBoard Center ¥
DatePicker o -
AlignVertical
TimePicke! Labell Center ¥
W CheckBox 7 Button1
AppName
Label Label2 Kakuro_Heler
ListPicker G Buten Back dCol
ackgroundColor
Label3
Wl Slider O white
Button3
PasswordTextBox o Backgroundimage
abel
Natfier Buttond.
G Image Label5 CloseScreenAnimation
Default v
WebViewer G Button:
@ VetV Button3
Label6 leen
B Spinne e
Button6
Layout Label7 - || OpenScreenAnimation .

The screen is composed of a few Vertical Alignments, only one of which is visible at a time.
A Menu Vertical Arrangement is reserved for Menu operations, not yet implemented.

An off-board ListView is used for button value choices.

The board is in its own Vertical Arrangement, visible when the app is built.

The Board GUI

The board uses Labels and Buttons for its cells. Other alternatives might have worked better,
like a canvas with everything drawn on it, or a grid of List Pickers. | initially tried just buttons, but
| was unable to align text in buttons to the right and bottom to get the diagonal line effect.

In order to support any configuration of labels (for the black cells) and buttons (for the white
cells) in 12 rows of 10 cells, | used 12 Horizontal Arrangements stacked in a Vertical
Arrangement. Each Horizontal Arrangement has 10 Labels and 10 Buttons, alternating. At
game load time, each pair of label and button is visited, setting one of them visible and the other
one invisible depending on cell type. That will support any sequence of labels or buttons

Label Attributes
These label attributes have to be specified in the Designer, because there is no Any block

support for them...

Labels must have no margins, and their Text Alignment must be Right. (Bottom would be nice,
but it is unavailable.)

Label background color and text colors are set at game load time, along with height and width,
which are set proportionally to screen height and width.

Button Attributes

Like labels, some button attributes must be set in the Designer because of lack of Block
support...

Designer Text Alignment for buttons should be Center.

8 Hharl
AlLabel
J Button
AlLabel2
J Button2
AlLabel3

J Button3

initialize global | to |
initialize global to [|Z| create empty list
initialize global to Z! create emptiy list

initialize global Jto | |1C create empty list

Rename Delete

edia

L L I

Fontltalic
O
FontSize

14.0

FontTypeface

default

HasMargins

TextAlignment

right

TextColor
B Black

~ | create empty list

T

Global Variables and
Data Structures

Button and Label
Management Structures
For convenience in the Blocks
Editor, all board buttons and
labels were loaded at
initialization time into the lists
buttons and labels.

Once the number of rows and
columns was determined
(currently forced to (12,10), the
buttons and labels were
gathered into rows and columns
in button_table and
label_table.

label_table
This contains the component

names of the board labels, assembled into a table (list of lists, row order).

button_table

This contains the component names of the board buttons, assembled into a table (list of lists,

row order).

Game Loading Structures

initialize global to |

initialize global to | B

initialize global | | to

| make a list

G e - A small number of
gl //Gamel3.csv J§ Media drawer, to be
. . addressed via the

pre-loaded game files
were uploaded to the

game_files list. This
is enough to get us

started. A manifest file listing the game files would be more flexible.

Game play structures

game

This table contains the internal representation of the board. Labels are constant integers in the
form 1VVHH where VV is a two digit vertical range sum of the cell range immediately below this
cell, and HH is a two digit horizontal range sum of the cell range immediately to the right of this
cell. The sums can range from 00 to 45. A zero sum can arise from the range being empty
because of an adjacent label cell or from being on the edge of the board. The upper left cell
must always contain 10000 because row 1 and column 1 contain only labels. The player cells
start out with a value of 0 and can be filled with values 1 to 9 by the player as he fills in the
board.

game_history
The Undo stack will be kept here. Copies of the global game table are taken after every move

and stacked here in a list, making it easy to undo by unstacking a level and copying that level to
game. (Not yet implemented.)

Cell ID calculation

cell_id

alize global | to T create empty list

initialize global to Z | create empty list
initialize global [ZZTi0 - to | |C| create empty list

X initialize global | Jto | I°| makealist §) ©)

(range id, sum) > initialize global (L' X Jto | | create empty list

initialize global | to |Z| create empty list
initialize global §IENENL -5 to | 10| create empty list

Each cell needs a way to identify it using a single value, combining both the row number RR
and the column number CC of that cell. This function uses multiplication by 100 to calculate
1RRCC. The leading “1” is handy to force a double digit representation of both the row and
column numbers, and to allow use of the text segment block to decode them.

Processing

Blocks Overview

All blocks have been minimized, and separated by function.
Note: This was written before the Al2 Generic Event block functionality was added.
The grid of button Click events could collapse into a single Any Button Click event .

Screen1.Initialize

when Initialize
do | set [EEEIELEEES fo -] N collect_labels -
= {1 global buttons ~ Ji} -1\l collect_buttons -

= global label table - RERERCNN biild_2d_board + LS80 = ! global labels - e ichla e 2 global ROWS - Jl=elH- 1 =1 global COLS - |
~-1 global button_table - KRN [SMENT global buttons - JLGICRE:] global ROWS - JReCRAR: = { global COLS -]
L4 global cell_buttons - BRI button_table | get EITEIRE 50

call hars | call

call LSRR global buttons -

call CLEENENCE global labels ~

31 initialize local [f) to ¢ select list ftem list |~ get I EIEIERIED | index | get (SN =Ed

in | e [Nofifier1 = BELTWVIEGHEESET My E= L R Reading Game File IR U CHBNG=T of - |

call -ReadFrom fileName | get [/

-

Because our labels and buttons will be addressed dynamically at run time, we need to collect
them into lists at Screen1.Initialize time. The Horizontal Arrangements holding the buttons and
labels are also collected in procedures A few sample game files are available in the Media
drawer, and one of them is loaded via the File1 component. (Game selection to be added later.)

collect_labels

to Z | create empty list

add items to list list
itemn
item |
item
item |
item
item
C | add items to list list |
itemn
item |
itern
itern
item |
itemn
C | add items to list list |

item

item

To make all label components available to the Blocks Editor, they need to be put into some kind
of list structure. | took the easy way out, and collected them in row-column order into a single
list, 6 at a time because my laptop can’t show big blocks. | pay the price later when | re-arrange
them into a list of lists to match their row & column arrangement. This is a return procedure.

collect_buttons

To make all button components available to the Blocks Editor, they need to be put into some
kind of list structure. | took the easy way out, and collected them in row-column order into a
single list, 6 at a time because my laptop can’t show big blocks. | pay the price later when |
re-arrange them into a list of lists to match their row & column arrangement. This is a return
procedure.

O | initialize local to Z | create empty list

add items to list list
item |
itemn
itern
itemn
itemn
itemn _. i
Z | add items to list list
itemn
item

item

item |

item
item
Z add items to list list

item

build_2d_board

5" Y build_2d_board |
result C | initialize local to create empty list
initialize local to create empty list
initialize local [| to
in

do for each | /| from

do set EMEESto | ' C create empty list

foreach - Jfrom () to | getiCEEED by £
do | IC| add items to list list | get EUEES
item | selectlistitem list = get [[E5E8
index | get [E)

Z add items to list list = get
item | copylist list | get ETEES

For this version of the game, we have the number of rows and columns hard wired in two global
variables. We reshape the one dimensional lists of labels and buttons into tables and store
them into the global variables label table and button table .

collect_cell_buttons

cell_buttons

B collect_cell_buttons |

result O| iinitialize local to | create empty list

foreach| | from ' [to . length of list list | get (ENEENER) by | @D

do | | initialize local to | select list item list L =8 button_table -
index | get [

foreach| .| from | [} to | length of list list get [EUED | by | D

in

do - initialize local to { select list item list | get [EFED | index | get 5D

in | ' C| additems to list list .getrnm
fem | _fmakealist | cal NI (oot G| < /] ot CRD

The global variable cell_buttons is initialized to a list of pairs, for use with the lookup in pairs
block, to map a cell_id to its matching button component. It loops through the rows and
columns of the global button table and inserts a pair consisting of the cell_id of that row and
column and that button component. This is a static structure.

collect_hars

Z| make a list

hart -
har2 -
har3 -
hard -
hard -
har6 -
har? -
har9 -
har10 -
harl1 -
harl2 -

The buttons and labels are arranged in rows in horizontal arrangements, which need to be
treated alike, so | collect them all into a list, and feed the list to the routine that clears them all.

clear_hars

SR clear hars J hars

do | foreach[| Jinlist | get [EEKD
4o oot HorizontalArangement. of component | get [[E%3

set HorizontalAmangement. [UFTERTEIEY of component | get LEI8 to | E)
S L LR Screeni - W Height - JAEIFEY global ROWS

N set HorizontalAmrangement. [ZERT#S of component | get LEIES fo | get LUK

: e
set HorizontalAmrangement. of component [get ([EIE) to 0 EITED

set HorizontalAmangement. [[[[FE) of component | get [E&# | to .

 —

Each horizontal arrangement needs to pass down to its labels right-bottom alignment (3), and
constant equal height and width.

clear_buttons

B clear_butions J buttons

do ((oreach (L)inkist || get (LTEEN
do et GGl BackgroundColor » Buiehl il @B =l button - SERG] -

set Button. of component (get LGN | to
T
set Bution. of component |/ get ETTETND | to W{ETED

set Bution. GFIEY of component (get ETIIINY| ' | | EEEEND - L | / | oot CETLIEE
set Button. {11} of component | get [ENES to ¥ Width - MR { global COLS -
set Button. of component [get [kl to | "B

set Button. [[FEIEEE) of component | get EGLES =4 global BIG_FONTSIZE -

—

To force all the cells with buttons on the board to a common size and appearance, we run
through all the buttons and set their attributes. We will customize them further after we load a
puzzle.

clear_labels

BRG] clear labels B

do | foreach [=Ninlist | get (EEEED
90 set Label. BackgroundColor » Byl G R [abel - SERCEES

set Label. [UEITED of component | get [ELEES to

set Label. [FEFIES of component |~ get [ELEE) to " Height - JALLL =1 global ROWS -
set Label. ([{[UTE of component | get [ETEES to N Width - JRAGH: -] global COLS -

set Label. of component [get [EIiEE) to | "B
set Label. (IR of component (Tget (iald| to #gel CLERINAG A
set Label. [GEEVETTERES of component | get [ETEES to FEEEERS
|
Vizible -
set Label. QEEERD of component [get [EERS to FEEEERS

—

To force all the cells with labels on the board to a common size and appearance, we run through
all the |abels and set their attributes. We will customize them further after we load a puzzle.

Game Loading

when File1.gotText

when .GotText

text

do call _DismissProgressDialog
set to | list from csv table text | get I3
- -1 global game_history - [C| make a list | copy list list | get

1 global range_cells - | ("W collect_Hsum_cells - |
append to list list1 | get FEEENECCC R | list2 | call
- global range_sums - RUEB R collect sums -+ oo Mo - global game -

=N display_game - R TR EE global game -

The text in a game file is pure numerical csv table format, ready for a list from csv table block.
We initialize game and game_history , collect range cells horizontally and vertically, calculate
range sums, and display the game board.

collect_Hsum_cells

BT collect_Hsum_cells

result | [C! initialize local [create empty list

initialize local [) create empty list

]
40 | for each () from | get CEZUSSISED o | @) [by | @D

do | set [EEE) to | create empty list

for each () from | get EEEEEERD to | §) | by &)
do | O] if

=l game_coll - LAY - JREP Y c - L0000
then || O : = i

add items to list list | get [FEIEES | item call CEIEEDr | get (@D | < | get CE
S

length of list list | get (EIEED 0
| initialize local) to] jon [@- call CCNEED " (Gl GO | < (gt
foreachi -, Dinlist | get (180
40 | IC| add items tolist list | get (ESNED | item

LS

- makealist | get GETIND | ' get (EIND

—

set to T | create empty list
—
| -

L -

—
resuit | get [EETED

The result of this procedure will be a list of pairs (HRRCC, cell_id) where HRRCC identifies the
row RR and column CC of the sum of the horizontal range that includes the cell identified by
cell_id .Ranges usually have several cells in them, so there will be several pairs with the same
HRRCC value but different consecutive cell_id values.

The ranges are identified by scanning game from right to left, building up an empty list of cells
until a sum cell is hit, then posting the pairs for that range, clearing the list, and continuing up
the row for the next range. Empty ranges are skipped.

collect_Vsum_cells

result | |C| initialize local [| to C| create empty list

initialize local [| to C| create empty list
] =
90 | for each [from | get G [to ‘6D | by | &
do | set to C| create empty list

for each [} from | get FETILIIEED | to | @ | by | €D

do M O N p—
e e et TR IR - 0000
- additems tolist list || get (EIKD | oM | coi NEER ¢ | gel G ¢ | oot GO

length of list list | get [EEEED (0]

initialize local | Jto O/ join ("= g " call D ¢ oot @] < I oot

foreach ([Jinlist | get CEI5ED

do 1" additems tolist list | get (ZTHD | Hem | | make alist | get QATIED

get (U
LY cells + RO C | create empty list
S

L
e

S
result | get [ESNED

The result of this procedure will be a list of pairs (VRRCC, cell_id) where VRRCC identifies the
row RR and column CC of the sum of the vertical range that includes the cell identified by
cell_id .Ranges usually have several cells in them, so there will be several pairs with the same
VRRCC value but different consecutive cell_id values.

The ranges are identified by scanning game from bottom to top, building up an empty list of cells
until a sum cell is hit, then posting the pairs for that range, clearing the list, and continuing up
the column for the next range. Empty ranges are skipped.

Global range_cells

The horizontal and vertical range-cell pairs are collected into a single global list of pairs,
range_cells.

Global range_sums
This global list is a 2 column table mapping range names into the target sums.
We build it at game load time from procedure collect_sums.

Collect sums

B0 collect_sums || game
resutt | (@] initialize local (E75) to | [©| create empty list
initialize local (Zo =15 to
in do [=
foreach() from ' §B | to | get ELEEIGEVEED | by
90 | foreach()from) | to | get FTIEIOERD | by

LR contents * LLRRENTTN game cell - RERIEY - IR Y C -

O BT contents
then [appendtolist st = get ETicEd
52 call EiEENCRS
id | cal RS - getlifd c !, get N3
contents | get ELCCRS

result | get ETIERS

This procedure traverses a given game table, by row and column, checking each game_cell if
its contents are of the form 1HHVYV, adding to a return list sums the extracted values from
procedure emit_sums .

Emit_sums

BRCT emit_sums I id | I
result | [©] initialize local §7) to o) .
quotiel - [*=4 contents - JEESE 100 |
initialize local |:| to remainder of - get = 'Em

initialize local | Jto |, [©| create empty list

(0]
then [(8] yqi it i = = . =
= additemsto list list | get EVIER | item | (© oie alist © join | “gp" o et KD
0]

then | (o] ; TP ; = . —
= additemsto list list | get EVIERS | item | (& oke aiist © jon | " - oct XK

These range sums are going to be needed for later, when the user works the puzzle.

The VV (vertical) and HH (horizontal) sum parts of the given range cell are extracted, and are
identified by a range type letter V or H prefix to the range cell ID, paired with the sum value.
The (id,sum) values are collected in pairs, suitable for use with the lookup in pairs block.

Show Wamings

display_game

B display_game Jf Game
do | for each [from | ') | to (“length of list list | get (ELEEd by | 6D

do || initialize local (1) to | select listitem list | get (Erd | index | get GG

N | foreach () from) | to | length of fist list | get KD by D

do | 1] initialize local (Z[0t0 | select list item list | get (EIED | index | get GED

SN display_bution - RETERT=Y ceil - AT r - RN c - R RE AN giobal bution._table -

|l display label » RET-RENGE cel ri get@ c | get @5 label table | get [FRENET
- J

To display the game table, we scan each row r and column ¢, and pass that cell, button, and

label to routines display_button and display_label, which will decide to display or hide their
respective component based on the cell value.

display_button

SE"Y display_button J vaive Ji v Jj c J button_tabe

do | O/ initialize local [] to

select list item list | get [(MILEEEES | index | get [E3

in | = initialize local (L1000 to | select fist item list get (EENETES | index | get KD
get

set Button. of component | get (k8 | to [get

set Button. of component [get [ENGCHRe = to P EERS -

set Button. of component | get [LNGGHES to I EUERS [

L —

else et Button. of component [get LGRS to 'ﬂE-

set Button. of component [get [[WGGHES to FEEEEES

L.

To display a button, we start by looking up its component in the button_table , by row and
column, verifying that it is indeed a button by value < 10000, then set the button contents,
visibility, and enabled attributes accordingly.

display_label

BT Jsplay Tabel J vaive J « J < i abel_tabie)

do | |Z/ initialize local (CEENT N to | select fist item fist | get (ATINZAEED | index | get (73
in | |2 initialize local (CT50 1o | select list item list | get (. SHEITED | index | get 3
ol (= =1 value

then set Label. of component get [ELEE) to call EESIEGCNETES xVVHH get |
set Label. (QUEIICEEY of component | get (ELEIE to | :m

€ISe | set Label. (YE[IEKD of component | get (HLED to VD

To display a label, we start by looking up its component in the |abel_table , by row and column,
verifying that it is indeed a label by value >= 10000, then set the label contents, visibility, and
enabled attributes accordingly. The diagonal slash separating the vertical and horizontal sums
is built up in the slash_and_label value procedure, and requires a monospace font and
right-bottom alignment.

slash _and label

This routine will take a 5 digit number
1VVHH and show it as

segment text \VV
start | [HH\

length

The routine Z2 handles forcing a
constant width of 2 places, with
segment text leading blanks.

start -

length

72

51 02 @D

result | | initialize local () to segment text | get (R start [) length | gD
initialize local () t0 ' gogment text | get LLED start | @ | length [(§)

i | comparetexts ' get [N BB ()"
then | cal (EITEW | B3
i compare texts | get (m | . = - [O
thenl 12! join | can (ERTER w 1 get (K3
else | get [IKD

This routine replaces all leading blanks of a two digit number, replacing them with a blank.
Because the Block Editor seems to eat blanks from text blocks, | had to write a value function
that would return a requested number of blanks ...

blanks

[0} blanks | W |

result | [0 initialize local [EEE Clcyto | =
in | segment text [get (LEEEIEES
start | [
length | get K3

Game Play

To play the game, the user pushes one of the buttons on the board, then selects a ListView
selection for what digit he wants to fill in for that cell, (or some menu options, to be added later.)

when_Button_rc_Clicked

; Click i Click when Button19 .Click do ca...
do do

when Button29 Click do ca...

handle_button

global selected r ¢

o to 00
do | set P RERd to I (2] make a list get (KD get XD

2y harDigits - to
BTN &acigroundColor |

of component | call

Each Button Click handler calls handle_button , which saves the selected row and column
number in global selected_r_c as a pair, for later use after ListView1 returns a Selection. The
button at (r,c) is looked up by routine get_button, then is colored yellow, so the player can
choose a digit for that cell.

There are lots of alternative ways to have handled this, like a table of active and inactive text
boxes.

The row and column of the selected cell are highlighted in yellow:
201 Genymaotion for personal use - Google Pixel € - 8.0 —-E-PI 26 - 2560x180... l =NF=al X |

[

YV oO18N 24 yooooeN 18\ TN Y

Y15 513 Y15
C0 0 Vo 0 0 |\

\17 \10 \ 8
v 00 4;n 0 0 0 qqy

%11 V26
\ 0 0 0 0 6 3

v A6 v\ \16
v oy 000 39y gy o34y

vV A2
v sy 0

I \ \ \ !

\13 \13
v 0 0 45

V17
V0 0 0

hY W27
15% 13N

Notice how the input digits are exposed at the top, and also colored yellow.

Get_button

(o) o FEED 0 B
result select list item list select list item list + =1 global button_table ~

index = get [E3

index | get

This is a 2 dimensional lookup into table button_table, initialized earlier.

When b1...b9 Clicked

when .Cligk

. when =R Click
Lz Ean handle_digit - RURM 1 :

do Ean handle_digit » LN 2

Digit entries are handled by the handle digit procedure, taking as input the requested value to
be assigned at the highlighted cell as recorded in the global selected_r_c variable.

Because | needed to fit a Menu button onto the board at the left of digits, 1-9, clearing a cell to 0
is handled under the Menu button by the btnClear button.

Handle_digit

3] to CECETD 0
do | (& initialize local [Jto = call
initialize local [l to call
in call
r | get O
c | get R

selection | get KD
K3 harDigits - B to

The first level of functionality for setting a cell value, identifying the row and column, is done by
procedures selected r and selected c. Then we call handle selection with the row, column,
and desired value that was just selected. Afterwards, we hide the Horizontal Arrangement with
the input digits.

Selected_r

result {.l select list item list | get FIIEE AR | index |)

Selected_c

I select list tem list | get [REEEIE=D 2o 0 Mo

Handle_selection

] handle_selection [r | ¢ | selection
do | (2| initialize local | o} cal CEEYTIRDr | getl@D | c I get X3
in call
=L AN - global game -

r
C

value

+1|N push -~ FEGNENST global game - JREMES = F global undos -

set B ENGEOERS to | |2 create empty list
set : to BREERS
call REILECEETNERS r | get @ c | get

set Button. of component | get i k@ to | get
1N paint_butions
button_table '+ =¢ global button _table -
invalid ranges v =0 global invalid_ranges -

To handle selection of a value for a cell, we first have to identify which button is associated with
that (r,c) coordinates, using procedure get_button, and save it in local variable button.

We then call procedure replace_cell to update our game board, then we push the new copy of
the game board onto our global undos stack. A new move clears the global redos stack .

We disable the Redo button (hidden in the Menu) until we have something to redo.

We call procedure validate_sums to collect the ranges that need to be highlighted because
they are clearly in error. The selected button has its .Text set to the requested selection value.
We then call paint_buttons to refresh each button with its validity indicator, white (valid) or red
(invalid) background.

Replace_cell

EBRY] replace_cell | table l r |l ¢ | value
do | (ol initialize local (70 to | sefect listitem list | get (2% | index | get (X3

in replace listitem list = get [TED
index

replacement

get (LRI
item | copylist list | get EE0%S

Pushing and popping are set up to use the last (highest index value) item of the stack as the
most recent.

Validate_sums

le] to 006
do | (2| initialize local (5]} to =l cell id~ R4 r - IR S c-

initialize local [*= "5} to | [©| create empty list
initialize local [~ - - to | |©| create empty list

in | set (EEIERA ©© | cal child_cell || get CZIRD
foreach () inlist | get
do ' [of if ¥ range is valid - R0 range -

then call
list =1 global invalid _ranges -
value | get EENCERS

else |£:§1| =l sl R) [[S =8 global invalid_ranges -
tem | get EEIENS

Validation of ranges is done incrementally, just for the two ranges (horizontal and vertical) that
contain the last updated cell. A global list of invalid ranges is maintained for the game board, for
later use painting invalid cell ranges. This is a bit shaky, done for speed, to avoid duplicate

work. If that global invalid_ranges list gets out of sync with the board, error painting will be
thrown off.

We identify the cell using a single value, returned from procedure cell_id from its coordinates
r,c. We call collect_parents to gather the parent ranges of our cell into local list parents.

For each range in the list of parents we test if range_is_valid. If valid, we remove it from the
global list invalid_ranges, otherwise we add it to that list.

The id of a cell is a number of the form 1RRCC where RR is the row r, and CC is the column c,
as 2 digit numbers. This gives us a single value, for easy comparison.

Collect parents

B collect_parents | child_cell

result [(@] initialize local { Jto | (@l create empty list

do [foreach{ =) inlist | get PRI E
do I i =1 child_cell -
B8 1, select listitem list | get (ETED

in

then [| add temstolist list | get EIEEED
tem | select listitem list | get FZRED

This procedure references global range_cells, a two column table (range,cell) which was built
during game loading. It builds up an initially empty list of owners from column 1 if column 2
matches the given cell id.

Range is valid

B15) range is_valid J 1
result | (o] initialize local 25 to | o) EEEEE range | get 53

in call cells | get RS

EE) | lookupinpairs key | get 53
pairs =t global range_sums -
notFound = [0

or - call cells | get [ZZER8
= - I 0]

and - | '
08 c (EEED (| e s oY cells -

For the game Kakuro, there are 2 rules that are applied to ranges that have been filled in (no
zeroes):

1. No duplicates allowed

2. The sum must match the stated target value for that range.

First we collect the children of the given range r into local variable cells, a list of their cell ids.
We count the number of duplicates of the values of those cells. There should be 0 duplicates.
Then we check if we have a full range (min_of_cells > 0) and if the sum_of_cells of that range
matches the value for that range in global range_sums.

Collect_children

B) collect_children B)

result | (@] initialize local Jto | |©| create empty list

in

LR e 1 T Giobal range cells - |
do ([if WY range -
B8 1| select listitem list | get (E5ED
then ([o additemstolist list | get Gl d
tem | select listitem list | get [| index

This procedure traverses the global range_cells, returning a list of all the cells that are in the
given range.

Sum_of_cells

B sum_of cells N cells
result | [@] initialize local (51 to | [
™ ¥\ do [foreach (-)inlist | get CZ5ED
do | set EMnEd to | (o] get ETuRS

+

call cell
vl col of cell - K2l

o cell -
o cell -

This procedure does a running subtotal of the values returned from game_cell at the row_of cell
and col of cell for the given cells list.

values _of_cells

B 5] values of cells I cells

result | (@] initialize local { Jto | [@| create empty list

™"\ do [foreach(")inlist | get CZCED
do o] additemstolist list = get FEI=%a
ilem | call FENEIEEIRD

TN 0w of cell - Ko AT cell -
¢ | call CENCEEED cell | get XKD

S

resuft | get

To collect the values of a list of cells, we look up each game_cell value for the row_of_cell and
col_of cell of that cell and add it to our return list of values.

Game_cell

result [select listitem list | select listitem list | get BELEIRE RS
index = get

index

Row_of_cell

G o of ceil J cell

i et ot quoientor

Cell IDs are of the form 1RRCC, so this extracts the RR.

Col_of _cell

B 1 col_of cell N cell

| get [EZIR8 | -

Cell IDs are of the form 1RRCC, so this extracts the CC.

Duplicates

B 01 duplicates
result | (ol initialize local to | (@l create empty list
initialize local [1 to | [1)

™" do | foreach inlist | get (K3

do | o) 2] item - &l

then [(ol if is inlist? thing | get (=5k3
[S = values + |

then setfif@to | (o e D

| S—
else (o additemstolist list = get FEIVED
tem | get [EUKS

To calculate the number of non-zero duplicates in a list, we build up a temporary list of values
we have seen already as we traverse the input list, adding 1 to a return count n each time we
get a hit.

Paint_buttons

@ paint_buttons I button_tabie Ji invalid_ranges ‘
LB global invalid_range cells - 1) =8 collect_invalid_cells -
invalid_ranges '+ =1 global invalid_ranges -

range cells L+ =1 global range cells -
12 cell_button |, = * (M"Y global cell_butions
do (o) initialize local (ZI) to | selact listitem list | get (EIIETCEED | index)

initialize: local (00 to | select fistitem list | get EEIEY{ETRD | index
(TR GackaroundColor -
of component | get
to LT Y cell - I S Y giobal invalid_range cells -

| E

This procedure first builds a global list invalid_range_cells using procedure collect invalid_cells
based on the global lists invalid ranges and range_cells. It then examines each cell_button in
the global list cell_buttons, breaking out its cell id and its button component and setting the
button’s BackgroundColor to red if the cell id is in the global invalid _range_cells, or white
otherwise. (This has the desirable side effect of clearing the yellow highlight of a cell button that
was just changed.)

Global invalid ranges

Global invalid_range_cells

Collect_invalid_cells

GRY coliect_invalid_cells

result | (@] initialize local (@] create empty list

initialize local
initialize local
do [for each inlist | get (BN X3
do set ENCMM to | selectlistitem list | get [EENCIED | index | D

1y}

set EEIR o | selectlistitem list | get (ENEIRD | index B3
e isin list? thing | get [ENNERD | list | get [NETENENES
CLLES ¢ not © g in list? thing | get KD | list | get MEENEEE

then | (9] aqd itemsto list list | get (ECRD | tem | get CEIED

result =i invalid _cells -

|

Invalid cells are the cells whose cell ids are in invalid ranges. We traverse the given list of
range_cell pairs, extracting the range and contained cell id. If the range is not already in the list
of invalid ranges and if the cell is in that range, we add it to the returned list.

Menu Buttons

8 [harBoard
2 [HvarMenu
2 btnBack
& btnclear
& btnundo
& btnRedo
) btnsave
& btnLoad
£ btnQuit

When btnBack Clicked

when Click

Resume

LR varlenu - B Visible -)T
el harDigits - M Visible - T
.

The Back button just calls the resume procedure, which hides the Menu and Digits
Arrangements.

When btnClear Clicked

when Click
L WCN handle_digit ~ RUNM O

The Clear button hides the Menu and acts as if a 0 digit had been entered for a cell value, using
procedure handle_digit.

When btnUndo Clicked

'Y=l btnUndo - e«
do - if lenath of list list | get EIEITE RS il
- TN push - EELIEREET global game - JIRCNERT=T global redos -
=8l binRedo - |l Enabled - Gl true -
-1 global game ~ RURENE o0 - B = { global undos -
N resume -

=[N display validated g
L —

The Undo button is part of a pair of buttons that let you undo moves (btnUndo), and redo
undone moves (btnRedo). They work off the game table, which reflects the current state of the
game through the current values of all cells, and a pair of stacks,

e Global undos
e Global redos

During game play, at each move a copy of the game board is pushed onto stack undoes. When
a move is undone, the game board is pushed onto the redos stack, then the prior value of the
game board is popped off the undos stack. Changing the board with an undo operation requires
complete revalidation of the board using procedure display_validated_game.

Pop

0| initialize local & to | (O

1| create empty list
initialize local () to length of list list | get RS

if

get (K3 (&N | O

then set (BiED to | copylist list | select list item list

index
remove list item list o= d from - |

index | get [E3

Popping from a list is done off the high index end.

Display_validated _game

B G display validated game

=l display_game - Je-lu R

v N validate all sums -
w-| M paint buttons

button_table 1+ =8 global button_table -

invalid_ranges

+ =4 global invalid_ranges -

We first call display _game to show the game board.

We then call validate_all_sums to check all ranges and fill global invalid ranges.
We then call paint_buttons to highlight bad cells.

Validate all sums

BN validate all_ sums

do | set Pl ZEE e —Ra fo | (o create empty list

for each () B EE global range_sums -
do (o initialize local [) to select list tem list | get [ELN LIS
index [ED
in | lof if =l range is valid - Rl =1 range -
then call
list =1 global invalid _ranges -

value | get [ENERS

else IE}I =l sl R) [[S =8 global invalid_ranges -

tem | get [ELFERS

This procedure does brute force validation on every range_sum pair in global range _sums.
We call range_is_valid against the range in each range_sum.

If the range is valid, we remove it from the global list invalid_ranges, otherwise we add it to the
list invalid_ranges.

Gallery link
ai2.appinventor.mit.edu/?galleryld=5770654380064768

Other projects

https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT600zxdIWglgbmzroA/ed
it?usp=sharing

http://ai2.appinventor.mit.edu/?galleryId=5770654380064768
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing

	Kakuro Helper V01
	
	
	
	Background
	Sample Puzzle
	
	Input Format
	Sample CSV Text

	The Designer
	The Board GUI
	Label Attributes
	Button Attributes

	Global Variables and Data Structures
	Button and Label Management Structures
	label_table
	button_table

	Game Loading Structures
	Game play structures
	game
	game_history
	Cell ID calculation
	cell_id

	Processing
	Blocks Overview
	Screen1.Initialize
	collect_labels
	collect_buttons
	build_2d_board
	collect_cell_buttons
	cell_buttons
	collect_hars
	clear_hars
	clear_buttons
	clear_labels

	Game Loading
	when File1.gotText
	collect_Hsum_cells
	collect_Vsum_cells
	Global range_cells
	Global range_sums
	Collect_sums
	Emit_sums
	

	display_game
	display_button
	display_label
	slash_and_label
	Z2
	blanks

	Game Play
	when_Button_rc_Clicked
	handle_button
	global selected_r_c
	Get_button

	When b1...b9 Clicked
	Handle_digit
	Selected_r
	Selected_c
	
	Handle_selection
	Replace_cell
	Push

	Validate_sums
	Cell_id
	Collect_parents
	Range_is_valid
	Collect_children
	Sum_of_cells
	values _of_cells
	 Game_cell
	Row_of_cell
	Col_of_cell

	Duplicates

	Paint_buttons
	Global invalid_ranges
	Global invalid_range_cells
	Collect_invalid_cells

	Menu Buttons
	When btnBack Clicked
	Resume
	When btnClear Clicked
	 When btnUndo Clicked
	Pop

	Display_validated_game
	Validate_all_sums

	Gallery link
	Other projects

