
Kakuro Helper V01

Background
Sample Puzzle
Input Format

Sample CSV Text

The Designer
The Board GUI

Label Attributes
Button Attributes

Global Variables and Data Structures
Button and Label Management Structures

label_table
button_table

Game Loading Structures
Game play structures

game
game_history

Cell ID calculation
cell_id

Processing
Screen1.Initialize

collect_labels
collect_buttons
build_2d_board
collect_cell_buttons
cell_buttons
collect_hars
clear_hars
clear_buttons
clear_labels

Game Loading
when File1.gotText
collect_Hsum_cells
collect_Vsum_cells
Global range_cells

Global range_sums
Collect_sums
Emit_sums

display_game
display_button
display_label

slash_and_label
Z2

blanks
Game Play

when_Button_rc_Clicked
handle_button

global selected_r_c
Get_button

When b1...b9 Clicked
Handle_digit

Selected_r
Selected_c
Handle_selection

Replace_cell
Push

Validate_sums
Cell_id
Collect_parents
Range_is_valid

Collect_children
Sum_of_cells
values _of_cells

Game_cell
Row_of_cell
Col_of_cell

Duplicates
Paint_buttons

Global invalid_ranges
Global invalid_range_cells
Collect_invalid_cells

Menu Buttons
When btnBack Clicked
Resume

When btnClear Clicked
When btnUndo Clicked

Pop
Display_validated_game
Validate_all_sums

Gallery link
Other projects

Background

The New York Sunday News carries a Hidato Puzzle in its comic section. This app is meant to
help solve the puzzle. This app lets you solve the puzzle, with Undo/Redo capability and error
checking. Because of its size, special care needs to be taken in the Blocks Editor to keep
everything collapsed, and to use a device or GenyMotion for testing. It’s too big for the MIT Ai2
emulator.

Sample Puzzle

Kakuro is played on a 12 row by 10 column grid of black and white cells. The black cells
contain target sums for the white cells immediately to their right and below them. The white
cells start out empty, for the players to fill with numbers in the range 1 to 9. No duplicates are
allowed in any vertical or horizontal range.

This sample puzzle has almost
totally been solved, except for the
vertical range of red cells in the
lower right, which though it adds
up to 16, contains duplicate 7’s.

In the original puzzles, the black
cells are drawn with white number
sums on a black background,
separated by a white diagonal line.

This implementation uses labels
for the black cells, with black
letters on a light grey background
for readability. The diagonal line is
simulated by two ‘\’ characters,
spaces, a line feed \n character,
and a monospace font that just fits
two lines per cell.

Input Format

Because of the grid nature of
this game, it’s easy to enter
puzzles through a spreadsheet
program. However, the black
cells pose a problem: how to
keep two numbers in one cell?

Because the white cells must
contain unique numbers in the
range 1 to 9, the sum of any
range can’t exceed 45
(1+2+...+9). If we express all
range sums as two digit
numbers, we can combine a
vertical range sum VV and a

horizontal range sum HH as the number 1VVHH, like in this Game03.csv Excel file, which was
used to load the preceding example. White cells start out with a value of 0. The leading ‘1’ in
the black cells is necessary to distinguish between a black cell with two blank range values
(10000) and an empty white cell (0). This lets us use numeric input for all cells.

Sample CSV Text

This is how Game03.csv looks after being exported from a spreadsheet program in csv format...

10000,11000,11900,10400,10000,10000,11300,11600,10000,10000
10019,0,0,0,11600,10017,0,0,13900,10500
10020,0,0,0,0,12925,0,0,0,0
10003,0,0,11110,0,0,10000,11606,0,0
10000,10900,13112,0,0,0,11717,0,0,10000
10007,0,0,0,10430,0,0,0,0,11000
10007,0,0,10817,0,0,0,10505,0,0
10000,10022,0,0,0,0,12020,0,0,0
10000,11405,0,0,10013,0,0,0,10700,11600
10016,0,0,11200,11609,0,0,11311,0,0
10024,0,0,0,0,10011,0,0,0,0
10000,10000,10017,0,0,10000,10017,0,0,0

The Designer

The screen is composed of a few Vertical Alignments, only one of which is visible at a time.
A Menu Vertical Arrangement is reserved for Menu operations, not yet implemented.
An off-board ListView is used for button value choices.
The board is in its own Vertical Arrangement, visible when the app is built.

The Board GUI

The board uses Labels and Buttons for its cells. Other alternatives might have worked better,
like a canvas with everything drawn on it, or a grid of List Pickers. I initially tried just buttons, but
I was unable to align text in buttons to the right and bottom to get the diagonal line effect.

In order to support any configuration of labels (for the black cells) and buttons (for the white
cells) in 12 rows of 10 cells, I used 12 Horizontal Arrangements stacked in a Vertical
Arrangement. Each Horizontal Arrangement has 10 Labels and 10 Buttons, alternating. At
game load time, each pair of label and button is visited, setting one of them visible and the other
one invisible depending on cell type. That will support any sequence of labels or buttons

Label Attributes

These label attributes have to be specified in the Designer, because there is no Any block
support for them…

Labels must have no margins, and their Text Alignment must be Right. (Bottom would be nice,
but it is unavailable.)

Label background color and text colors are set at game load time, along with height and width,
which are set proportionally to screen height and width.

Button Attributes

Like labels, some button attributes must be set in the Designer because of lack of Block
support…

Designer Text Alignment for buttons should be Center.

Global Variables and

Data Structures

Button and Label

Management Structures

For convenience in the Blocks
Editor, all board buttons and
labels were loaded at
initialization time into the lists
buttons and labels.

Once the number of rows and
columns was determined
(currently forced to (12,10), the
buttons and labels were
gathered into rows and columns
in button_table and
label_table.

label_table

This contains the component
names of the board labels, assembled into a table (list of lists, row order).

button_table

This contains the component names of the board buttons, assembled into a table (list of lists,
row order).

Game Loading Structures

A small number of
pre-loaded game files
were uploaded to the
Media drawer, to be
addressed via the
game_files list. This
is enough to get us

started. A manifest file listing the game files would be more flexible.

Game play structures

game

This table contains the internal representation of the board. Labels are constant integers in the
form 1VVHH where VV is a two digit vertical range sum of the cell range immediately below this
cell, and HH is a two digit horizontal range sum of the cell range immediately to the right of this
cell. The sums can range from 00 to 45. A zero sum can arise from the range being empty
because of an adjacent label cell or from being on the edge of the board. The upper left cell
must always contain 10000 because row 1 and column 1 contain only labels. The player cells
start out with a value of 0 and can be filled with values 1 to 9 by the player as he fills in the
board.

game_history

The Undo stack will be kept here. Copies of the global game table are taken after every move
and stacked here in a list, making it easy to undo by unstacking a level and copying that level to
game. (Not yet implemented.)

Cell ID calculation

cell_id

Each cell needs a way to identify it using a single value, combining both the row number RR
and the column number CC of that cell. This function uses multiplication by 100 to calculate
1RRCC. The leading “1” is handy to force a double digit representation of both the row and
column numbers, and to allow use of the text segment block to decode them.

Processing

Blocks Overview

All blocks have been minimized, and separated by function.
Note: This was written before the AI2 Generic Event block functionality was added.
The grid of button Click events could collapse into a single Any Button Click event .

Screen1.Initialize

Because our labels and buttons will be addressed dynamically at run time, we need to collect
them into lists at Screen1.Initialize time. The Horizontal Arrangements holding the buttons and
labels are also collected in procedures A few sample game files are available in the Media
drawer, and one of them is loaded via the File1 component. (Game selection to be added later.)

collect_labels

To make all label components available to the Blocks Editor, they need to be put into some kind
of list structure. I took the easy way out, and collected them in row-column order into a single
list, 6 at a time because my laptop can’t show big blocks. I pay the price later when I re-arrange
them into a list of lists to match their row & column arrangement. This is a return procedure.

collect_buttons

To make all button components available to the Blocks Editor, they need to be put into some
kind of list structure. I took the easy way out, and collected them in row-column order into a
single list, 6 at a time because my laptop can’t show big blocks. I pay the price later when I
re-arrange them into a list of lists to match their row & column arrangement. This is a return
procedure.

build_2d_board

For this version of the game, we have the number of rows and columns hard wired in two global
variables. We reshape the one dimensional lists of labels and buttons into tables and store
them into the global variables label_table and button_table .

collect_cell_buttons

cell_buttons

The global variable cell_buttons is initialized to a list of pairs, for use with the lookup in pairs
block, to map a cell_id to its matching button component. It loops through the rows and
columns of the global button_table and inserts a pair consisting of the cell_id of that row and
column and that button component. This is a static structure.

collect_hars

The buttons and labels are arranged in rows in horizontal arrangements, which need to be
treated alike, so I collect them all into a list, and feed the list to the routine that clears them all.

clear_hars

Each horizontal arrangement needs to pass down to its labels right-bottom alignment (3), and
constant equal height and width.

clear_buttons

To force all the cells with buttons on the board to a common size and appearance, we run
through all the buttons and set their attributes. We will customize them further after we load a
puzzle.

clear_labels

To force all the cells with labels on the board to a common size and appearance, we run through
all the labels and set their attributes. We will customize them further after we load a puzzle.

Game Loading

when File1.gotText

The text in a game file is pure numerical csv table format, ready for a list from csv table block.
We initialize game and game_history , collect range cells horizontally and vertically, calculate
range sums, and display the game board.

collect_Hsum_cells

The result of this procedure will be a list of pairs (HRRCC, cell_id) where HRRCC identifies the
row RR and column CC of the sum of the horizontal range that includes the cell identified by
cell_id .Ranges usually have several cells in them, so there will be several pairs with the same
HRRCC value but different consecutive cell_id values.

The ranges are identified by scanning game from right to left, building up an empty list of cells
until a sum cell is hit, then posting the pairs for that range, clearing the list, and continuing up
the row for the next range. Empty ranges are skipped.

collect_Vsum_cells

The result of this procedure will be a list of pairs (VRRCC, cell_id) where VRRCC identifies the
row RR and column CC of the sum of the vertical range that includes the cell identified by
cell_id .Ranges usually have several cells in them, so there will be several pairs with the same
VRRCC value but different consecutive cell_id values.

The ranges are identified by scanning game from bottom to top, building up an empty list of cells
until a sum cell is hit, then posting the pairs for that range, clearing the list, and continuing up
the column for the next range. Empty ranges are skipped.

Global range_cells

The horizontal and vertical range-cell pairs are collected into a single global list of pairs,
range_cells.

Global range_sums

This global list is a 2 column table mapping range names into the target sums.
We build it at game load time from procedure collect_sums.

Collect_sums

This procedure traverses a given game table, by row and column, checking each game_cell if
its contents are of the form 1HHVV, adding to a return list sums the extracted values from
procedure emit_sums .

Emit_sums

These range sums are going to be needed for later, when the user works the puzzle.
The VV (vertical) and HH (horizontal) sum parts of the given range cell are extracted, and are
identified by a range type letter V or H prefix to the range cell ID, paired with the sum value.
The (id,sum) values are collected in pairs, suitable for use with the lookup in pairs block.

display_game

To display the game table, we scan each row r and column c, and pass that cell, button, and
label to routines display_button and display_label, which will decide to display or hide their
respective component based on the cell value.

display_button

To display a button, we start by looking up its component in the button_table , by row and
column, verifying that it is indeed a button by value < 10000, then set the button contents,
visibility, and enabled attributes accordingly.

display_label

To display a label, we start by looking up its component in the label_table , by row and column,
verifying that it is indeed a label by value >= 10000, then set the label contents, visibility, and
enabled attributes accordingly. The diagonal slash separating the vertical and horizontal sums
is built up in the slash_and_label value procedure, and requires a monospace font and
right-bottom alignment.

slash_and_label

This routine will take a 5 digit number
1VVHH and show it as

\VV
HH\

The routine Z2 handles forcing a
constant width of 2 places, with
leading blanks.

Z2

This routine replaces all leading blanks of a two digit number, replacing them with a blank.
Because the Block Editor seems to eat blanks from text blocks, I had to write a value function
that would return a requested number of blanks …

blanks

Game Play

To play the game, the user pushes one of the buttons on the board, then selects a ListView
selection for what digit he wants to fill in for that cell, (or some menu options, to be added later.)

when_Button_rc_Clicked

handle_button

global selected_r_c

Each Button Click handler calls handle_button , which saves the selected row and column
number in global selected_r_c as a pair, for later use after ListView1 returns a Selection. The
button at (r,c) is looked up by routine get_button, then is colored yellow, so the player can
choose a digit for that cell.

There are lots of alternative ways to have handled this, like a table of active and inactive text
boxes.

The row and column of the selected cell are highlighted in yellow:

Notice how the input digits are exposed at the top, and also colored yellow.

Get_button

This is a 2 dimensional lookup into table button_table, initialized earlier.

When b1...b9 Clicked

Digit entries are handled by the handle_digit procedure, taking as input the requested value to
be assigned at the highlighted cell as recorded in the global selected_r_c variable.
Because I needed to fit a Menu button onto the board at the left of digits, 1-9, clearing a cell to 0
is handled under the Menu button by the btnClear button.

Handle_digit

The first level of functionality for setting a cell value, identifying the row and column, is done by
procedures selected_r and selected_c. Then we call handle_selection with the row, column,
and desired value that was just selected. Afterwards, we hide the Horizontal Arrangement with
the input digits.

Selected_r

Selected_c

Handle_selection

To handle selection of a value for a cell, we first have to identify which button is associated with
that (r,c) coordinates, using procedure get_button, and save it in local variable button.
We then call procedure replace_cell to update our game board, then we push the new copy of
the game board onto our global undos stack. A new move clears the global redos stack .
We disable the Redo button (hidden in the Menu) until we have something to redo.
We call procedure validate_sums to collect the ranges that need to be highlighted because
they are clearly in error. The selected button has its .Text set to the requested selection value.
We then call paint_buttons to refresh each button with its validity indicator, white (valid) or red
(invalid) background.

Replace_cell

Cell value replacement is done in place in a two dimensional table (list of lists).

Push

Pushing and popping are set up to use the last (highest index value) item of the stack as the
most recent.

Validate_sums

Validation of ranges is done incrementally, just for the two ranges (horizontal and vertical) that
contain the last updated cell. A global list of invalid ranges is maintained for the game board, for
later use painting invalid cell ranges. This is a bit shaky, done for speed, to avoid duplicate
work. If that global invalid_ranges list gets out of sync with the board, error painting will be
thrown off.

We identify the cell using a single value, returned from procedure cell_id from its coordinates
r,c. We call collect_parents to gather the parent ranges of our cell into local list parents.
For each range in the list of parents we test if range_is_valid. If valid, we remove it from the
global list invalid_ranges, otherwise we add it to that list.

Cell_id

The id of a cell is a number of the form 1RRCC where RR is the row r, and CC is the column c,
as 2 digit numbers. This gives us a single value, for easy comparison.

Collect_parents

This procedure references global range_cells, a two column table (range,cell) which was built
during game loading. It builds up an initially empty list of owners from column 1 if column 2
matches the given cell id.

Range_is_valid

For the game Kakuro, there are 2 rules that are applied to ranges that have been filled in (no
zeroes):

1.​ No duplicates allowed
2.​ The sum must match the stated target value for that range.

First we collect the children of the given range r into local variable cells, a list of their cell ids.
We count the number of duplicates of the values of those cells. There should be 0 duplicates.
Then we check if we have a full range (min_of_cells > 0) and if the sum_of_cells of that range
matches the value for that range in global range_sums.

Collect_children

This procedure traverses the global range_cells, returning a list of all the cells that are in the
given range.

Sum_of_cells

This procedure does a running subtotal of the values returned from game_cell at the row_of_cell
and col_of_cell for the given cells list.

values _of_cells

To collect the values of a list of cells, we look up each game_cell value for the row_of_cell and
col_of_cell of that cell and add it to our return list of values.

 Game_cell

Row_of_cell

Cell IDs are of the form 1RRCC, so this extracts the RR.

Col_of_cell

Cell IDs are of the form 1RRCC, so this extracts the CC.

Duplicates

To calculate the number of non-zero duplicates in a list, we build up a temporary list of values
we have seen already as we traverse the input list, adding 1 to a return count n each time we
get a hit.

Paint_buttons

This procedure first builds a global list invalid_range_cells using procedure collect_invalid_cells
based on the global lists invalid_ranges and range_cells. It then examines each cell_button in
the global list cell_buttons, breaking out its cell id and its button component and setting the
button’s BackgroundColor to red if the cell id is in the global invalid_range_cells, or white
otherwise. (This has the desirable side effect of clearing the yellow highlight of a cell button that
was just changed.)

Global invalid_ranges

Global invalid_range_cells

Collect_invalid_cells

Invalid cells are the cells whose cell ids are in invalid ranges. We traverse the given list of
range_cell pairs, extracting the range and contained cell id. If the range is not already in the list
of invalid ranges and if the cell is in that range, we add it to the returned list.

Menu Buttons

When btnBack Clicked

Resume

The Back button just calls the resume procedure, which hides the Menu and Digits
Arrangements.

When btnClear Clicked

The Clear button hides the Menu and acts as if a 0 digit had been entered for a cell value, using
procedure handle_digit.

 When btnUndo Clicked

The Undo button is part of a pair of buttons that let you undo moves (btnUndo), and redo
undone moves (btnRedo). They work off the game table, which reflects the current state of the
game through the current values of all cells, and a pair of stacks,

●​ Global undos
●​ Global redos

During game play, at each move a copy of the game board is pushed onto stack undoes. When
a move is undone, the game board is pushed onto the redos stack, then the prior value of the
game board is popped off the undos stack. Changing the board with an undo operation requires
complete revalidation of the board using procedure display_validated_game.

Pop

Popping from a list is done off the high index end.

Display_validated_game

We first call display_game to show the game board.
We then call validate_all_sums to check all ranges and fill global invalid_ranges.
We then call paint_buttons to highlight bad cells.

Validate_all_sums

This procedure does brute force validation on every range_sum pair in global range_sums.
We call range_is_valid against the range in each range_sum.
If the range is valid, we remove it from the global list invalid_ranges, otherwise we add it to the
list invalid_ranges.

Gallery link

ai2.appinventor.mit.edu/?galleryId=5770654380064768

Other projects

https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/ed
it?usp=sharing

http://ai2.appinventor.mit.edu/?galleryId=5770654380064768
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing
https://docs.google.com/document/d/1acg2M5KdunKjJgM3Rxpy_Rf6vT6OozxdIWglgbmzroA/edit?usp=sharing

	Kakuro Helper V01
	
	
	
	Background
	Sample Puzzle
	
	Input Format
	Sample CSV Text

	The Designer
	The Board GUI
	Label Attributes
	Button Attributes

	Global Variables and Data Structures
	Button and Label Management Structures
	label_table
	button_table

	Game Loading Structures
	Game play structures
	game
	game_history
	Cell ID calculation
	cell_id

	Processing
	Blocks Overview
	Screen1.Initialize
	collect_labels
	collect_buttons
	build_2d_board
	collect_cell_buttons
	cell_buttons
	collect_hars
	clear_hars
	clear_buttons
	clear_labels

	Game Loading
	when File1.gotText
	collect_Hsum_cells
	collect_Vsum_cells
	Global range_cells
	Global range_sums
	Collect_sums
	Emit_sums
	

	display_game
	display_button
	display_label
	slash_and_label
	Z2
	blanks

	Game Play
	when_Button_rc_Clicked
	handle_button
	global selected_r_c
	Get_button

	When b1...b9 Clicked
	Handle_digit
	Selected_r
	Selected_c
	
	Handle_selection
	Replace_cell
	Push

	Validate_sums
	Cell_id
	Collect_parents
	Range_is_valid
	Collect_children
	Sum_of_cells
	values _of_cells
	 Game_cell
	Row_of_cell
	Col_of_cell

	Duplicates

	Paint_buttons
	Global invalid_ranges
	Global invalid_range_cells
	Collect_invalid_cells

	Menu Buttons
	When btnBack Clicked
	Resume
	When btnClear Clicked
	 When btnUndo Clicked
	Pop

	Display_validated_game
	Validate_all_sums

	Gallery link
	Other projects

