2wibbler

Zwibbler collaboration server

Management API v0.1

This document describes the Zwibbler Collaboration Server Management APl (MAPI). The

functions of the management are:

e Provide secure access to the sessions, so that only authorized users may connect to a
session, and they can have separate view and modify, and "admin" permissions

enforced at the server level.
Dump, delete, and create documents’.
Provide notification when various events have occurred.

The MAPI refers to communication between your application server and your private instance of

the Zwibbler Collaboration Server. Communication between the web clients and the
collaboration server is described in Zwibbler Collaboration Server Protocol V2.

?b
LN
& v Application server

Your

/.

Your back-end servers

Zwibbler
pCollaboration Server

' A session refers to a document, or room, to which users can connect and modify. These words are used

interchangeably in this document.

Zwibbler
Collaboration
Protocol

(websocket)

Web client

Web client

Web client



https://docs.google.com/document/u/0/d/1X3_fzFqPUzTbPqF2GrYlSveWuv_L-xX7Cc69j13i6PY/edit

Permissions

Server level security allows three different classes of users, restricting what they can do with
whiteboards.

Since setting key/value pairs is used for presence information, all classes of users may set
these values, but certain key names are limited to administrative class users.

Permissions Examples Description

r Students in a class e (Can see changes
e Can set general keys

"rw" Students in a class e Can see changes
temporarily allowed to write to e Can make changes
a board e Can set general keys

"rwa" Teachers or moderators Can see changes

Can make changes
Can set general keys
Can set keys with
names beginning with
"admin:"

Tokens

Please refer to these example flows as you read the rest of the document. The central idea is
that instead of the clients connecting to a document using its ID, they instead use a different
identifier that is unique to each client, called a token. The collaboration server will then look up
the correct document from this token.

TOKEN

N K
permissions.

The token associates a particular user with a document ID and the user's read/write
permissions. Tokens automatically expire after a period of time.



This token can either be a signed JSON Web Token, or any string you choose. In the second
case, it must be pre-configured by your application server before the user tries to connect, using

a call to addToken().

User's web

browser

Securely join a session using
JSON Web Token (JWT)

Application Collaboration

SErver

SErVer

Request token

Signed token containing
< documentID, userid, permissions, expiry.

(Websocket connection using token as documentID))

User's web
browser

User's
Web Browser

Request token

-

Application Collaboration

SErver SEVEr

www.websequencediagrams.com

Securely join a session using addToken

Collaboration

Application

SERVer

SErvVer

» Token

addToken(token, user, documentID, permissions, expiration)
Includes secret app password ..

(Websocket connection using token as documentID) >

User's

Web Browser

Application Collaboration

SEIvVeEr SEIvVeEr

www.websequencediagrams.com



Securely dump and delete a session when all users have left

User's Application Collabaoration
Web Browser server server
Last user terminates websocket connection > This procedure is not necessary. By
default, the collaboration server will
. delete documents 24 hours after they
idle-session” event are last accessed by any user. This is
= Includes secret password from zwibbler.conf file controlled in the zwibbler.conf file.
dumpSession(documentID)
Includes secret password
Document contents 1
-
deleteSession({documentID)
Includes secret password
< ’f
I I

Security between application server and collaboration server

The application server refers to the backend that you implement. It is separate from the
collaboration server. Your application server may wish to delete sessions or dump their
information for long-term storage. This level of access and control requires authentication.

For this purpose, we use HTTP Basic authentication. A username / password is configured in
the Collaboration server configuration file (usually zwibbler.conf). Requests for server
management functions must contain this username/password, otherwise they will fail.

If you use the webhooks feature, you should also authenticate the call from the collaboration
server by checking if the HTTP username/password matches the one configured.

Endpoint

For simplicity in configuring web server forwards, the collaboration server uses a single endpoint
for both websocket and API calls, which is usually "/socket". This endpoint is used in different
ways.

How it is accessed Result
GET request to /socket and no An HTTP response with the text "Zwibbler collaboration
other parameters Server is running." This is important to verify the initial

setup of the collaboration server.

GET request to /socket and an This is how Zwibbler's client library connects to the server
Upgrade field in the HTTP over a websocket connection. The server will then wait




headers for the INIT message for a period of time, as described in
the Zwibbler Collaboration Protocol document.

If secure access is enabled on the server, the document
ID of the INIT message refers to a token, instead of a

document id.
POST request with a "method" The request is treated as a session management
and other parameters. request. It must contain a Base64-encoded

username/password as part of the HTTP Basic
authentication headers.

Session management

With MAPI, each user is forced to use a token instead of an explicit document identifier. The
token associates together the document id, user, and permissions. There are two ways of
getting these tokens to the server.

Implicit JSON Web Token Explicit tokens
Tokens are created and signed by your Tokens are identifiers created by your
application server, and sent to the client. application server. Before being used, your

When the client uses them, they are verified application server must first contact the
using a pre-shared key and implicitly trusted. | collaboration server using a POST call to
addToken, and then give that token to the
client for use.

Session management using implicit JWT

To create a JWT token, you first configure the server with a SHA256 key in the configuration file.
You will use this key to create the token using a JWT library of your choice.

The token must contain the following claims:

Claim Description

exp The expiration time of the token, as a numeric value of the number of
seconds since the epoch (unix time).

sub The document ID as a string. The "sub" stands for subject, and is
chosen because it is a standard claim in the JWT specification.



https://docs.google.com/document/d/1X3_fzFqPUzTbPqF2GrYlSveWuv_L-xX7Cc69j13i6PY/edit?usp=sharing

u The userid as a string.

p The permissions, as a string. See the documentation for addToken
below.

When JSON Web Tokens are used, the application server does not need to call addToken
before using them.

Session management using explicit tokens

Session management refers to the creation and deletion of sessions and tokens. All of these
REST methods are expected to be between the Application Server and the Collaboration server,
never from a Web browser. That way, HTTP Basic authentication can be used.

To call these methods, make a POST request. The URL must be the endpoint used by the
server (usually ending in /socket). The username and password must be encoded in the
Authorization field of the HTTP headers. The parameters are sent using
x-www-form-url-encoding.

addToken

This method is deprecated because it is not compatible with redis-cluster. You should use JWT
instead.

POST parameter Description

method "addToken"

token New token identifier - a text string.
documentID The document ID - a text string.

userlD A user id - a text string used to identify users

in updateUser

permissions "r'" - read only

"rw" - read and write.

"rwa" - read, write, and set keys beginning
with "admin:"

" - user may not access whiteboard.

expiration Expiration time, as an REC date using the
same format as an HTTP cookie.

contents (Optional) contents of the document to create



https://www.rfc-editor.org/rfc/rfc2616#section-3.3.1

Adding a token creates an association between a particular user, the document, and
permissions. Optionally it can be used to create a new document from previously saved data. If
contents are specified and the document already exists, the call will fail with HTTP error code

409 (Conflict).

If the token already exists, HTTP error code 409 (Conflict) will be sent.

If the username/password in the authentication headers do not match the ones from the
configuration file, HTTP code 401 will be returned.

updateUser
POST parameter Description
method "updateUser"
userlD The user id, as specified in a previous call to
addToken or inside a JWT token
documentID The document ID.
permissions New permissions (See addToken)

This method changes the permissions for a particular user. If that user is not connected to the
given document and has no unexpired tokens, it has no effect.

If permissions is ", the user is immediately disconnected from the whiteboard.

deleteDocument

POST parameter Description
method "deleteDocument"
documentID The document ID.

When a document is deleted, all users viewing that document are immediately disconnected

and the document is removed from the database.

dumpDocument




POST parameter Description

method "dumpDocument"”

documentID The document ID.
RESPONSE

The response is the text of the document. This text can be directly opened in Zwibbler using
ctx.load() or used in a call to createDocument on the collaboration server. If it does not exist,

HTTP 404 is returned.

checkDocument
This was been added in October in 2023

POST parameter Description

method "checkDocument"

documentID The document ID.
RESPONSE

This returns an empty response. The response code is 404 if the document does not exist and

200 if it exists.

createDocument

POST parameter Description

method "createDocument”

documentID The document ID.

contents The contents of the document. This
parameter may be sent in the form data as
either a text field or a file. When encoded as
a file, the name and content-type are ignored.

If the document already exists, HTTP 409 (Conflict) is returned



https://zwibbler.com/docs/#load

Events

The server may be configured to notify an endpoint when all users have left a session. In this
case, the server will make an HTTPS request to the endpoint, including a username/password
specified in the configuration file, containing data about the event.

The request will be a POST request with the following parameters, in addition to the HTTP Basic
authentication in the headers.

POST parameter Description

event "idle-session"

documentID The identifier of the document.
Test cases
addToken()

HTTP 401 is sent if username / password do not match

HTTP 400 is sent if missing fields or parameters are incorrect.

HTTP 4009 is sent if token already exists

HTTP 4009 is sent if contents are specified and document already exists

After calling it, users can connect to the document using the token

After expiry, users can no longer connect to the document using the token.

updateUser()

HTTP 401 is sent if username/password do not match

HTTP 400 is sent if parameters are missing / incorrect

The user receives special NACK code 2 if permissions are changed to readonly and he/she
tries to alter the document

The user is immediately disconnected if the permissions are changed to

deleteDocument()



HTTP 401 is sent if username/password do not match

HTTP 400 is sent if parameters are missing / incorrect

All users receive error 0x0001 and are immediately disconnected from the document

After deleting a document, it is no longer available using dumpDocument()

createDocumenty()

HTTP 401 is sent if username/password do not match

HTTP 400 is sent if parameters are missing / incorrect

If the document already exists, HTTP 409 (Conflict) is returned

After creating the document, it is available using dumpDocument

checkDocumenty()

HTTP 401 is sent if username/password do not match

HTTP 400 is sent if parameters are missing / incorrect

HTTP 404 is sent if the document does not exist

HTTP 200 is sent if the document exists

dumpDocument()

HTTP 401 is sent if username/password do not match

HTTP 400 is sent if parameters are missing / incorrect

HTTP 404 is sent if the document does not exist

* Success case is tested as part of createDocument()

Permissions

After an INIT message, if the user has no read permissions, then the error is "access denied"
and disconnection.

If the user lacks write permission, and the creation mode is ALWAYS CREATE, the error is
"access denied".




If the user lacks write permission, and the creation mode is POSSIBLY_CREATE and the
document does not yet exist, the error is "access denied".

If the user lacks write permission and the creation mode is POSSIBLY_CREATE and the
document already exists, they receive the contents of the existing document.

Upon receiving the APPEND message, if the user lacks write permissions, the server shall
respond with ACK/NACK code 0x0002

When connecting with administrative permission, user can set keys beginning with admin:

When connecting without administrative permission, when setting a key beginning with
"admin:" then user receives SET_KEY_ACK with NACK=1 and other users do not receive

keys.

JWT

Expired JWT in INIT message is rejected with "access denied" and disconnection.

JWT with bad signature is rejected with "access denied" and disconnection.

Correctly formatted JWT is accepted.

When JWT is used, clients must use a token and cannot create a document using a random
identifier.




	https://zwibbler.com/logo.png 
	Zwibbler collaboration server Management API v0.1 
	Permissions 
	Tokens 
	Security between application server and collaboration server 
	Endpoint 


	Session management 
	Session management using implicit JWT 
	Session management using explicit tokens 
	addToken 
	updateUser 
	deleteDocument 
	dumpDocument 
	RESPONSE 

	checkDocument 
	RESPONSE 

	createDocument 

	Events 
	Test cases 


