
Operation Options: A Story of Language
Design
Details some challenges of language design through the lens of Beka
Westberg’s 2020 GSoC project.

Video
A short video describing problems of language design & backwards compatibility solely through
the lens of the blocks-based editor.

Languages in App Inventor
App Inventor is a system of components. These components interact with three different
languages:

●​ Java.
●​ Yail, a Scheme variant.
●​ A blocks-based language.

Java is used for two things: (1) to declare the components’ functionality, (2) to declare the blocks
in the blocks editor. To have blocks associated with it a component must include special

https://youtu.be/doO2BAGCanM
https://youtu.be/doO2BAGCanM

annotations like @SimpleProperty, @SimpleFunction, and @SimpleEvent in its Java
definition. These annotations are read by an AnnotationProcessor which creates a special
JSON file to tell the blocks editor which blocks to make.

The App Inventor user programs their app using these blocks. Once they are done, the blocks
are used to generate Yail code, which is what is actually run on the user’s phone. The Yail code
calls functions in the Java component definitions, to make the components do things.

Operation Options
There were two goals to the Operation Options project.

1.​ Add dropdown blocks to the App Inventor blocks editor.
These blocks would replace existing constants inside App Inventor, which usually
represented states such as VerticalAlignment(1:top, 2:center, 3:bottom).

Dropdown blocks are advantageous because they are internationalizable, they reduce
invalid value errors, and they make working with the blocks editor more efficient. They
also add abstraction to the blocks editor by hiding the concrete values (eg 1, 2, 3) behind
abstract names (eg top, center, bottom).

2.​ Allow enums to be used as parameters to Java functions.
These enums would then get translated into dropdown blocks by the
AnnotationProcessor. Using an enum to define the dropdown block is advantageous
because it increases the type safety of the component definitions. They also add
abstraction to the Java code by hiding the concrete values (eg 1, 2, 3) behind abstract
names (eg top, center, bottom).

For example a concrete function definition like this:

@SimpleProperty​
public void AlignVertical(int align) {​
 if (align > 0 && align <= 3) {​
 this.alignVertical = align;​
 } else {​
 this.dispatchErrorOccurred();​
 }​
}

Turns into a type-safe function definition like this:

@SimpleProperty​
public void AlignVertical(VerticalAlignment align) {​
 this.alignVertical = align;​
}

Ideal Solution
If we were building App Inventor from scratch we could create an ideal world in which these
enum values are very abstract and type safe. The following is a description of this ideal world.

●​ Dropdown blocks would never act like concrete values, only enum values.
●​ Functions which expect enum values would only accept enum values of the type they

expect.
●​ Comparisons containing enum values would only ever possibly be true if the values are

of the same type.
●​ Dictionary lookups would only ever possibly return values if there was a key in the

dictionary matching the type of the lookup.
●​ Where applicable, generated YAIL code would only contain enum values.
●​ Where applicable, Java would only work with enum values.

Backwards Compatibility
The problem we ran into was that we were not building App Inventor from scratch. We were
extending an existing set of languages to support enum values.

This meant that we had to make sure that our language extensions were
backwards-compatible with programs people had written in the existing versions of our
languages. This was especially important because App Inventor has many novice users, and it
is important that they don’t have to do any confusing upgrades of their code.

The following is a description of the specific backwards compatibility problems that we had to
design around.

Java
App Inventor allows outside-developers to create things called “extensions”. Extensions are just
like built-in components, except that they must be installed separately. App Inventor allows
extension developers to create extensions that subclass built-in components, or otherwise
leverage their functionality. This put severe constraints on Operation Options because it meant

that if we wanted to be backwards compatible with extensions, we could not change any
public or protected Java function headers.

This meant that our ideal version of Java could not exist. We would have to allow Java to work
on concrete values into perpetuity, just in case those values were being passed from
extensions.

Blocks
The blocks editor also caused us problems. As stated earlier these enum values were meant to
replace concrete constants which already existed within the blocks editor, like this for example:

Most of these instances could be upgraded to use dropdown blocks automatically (above) but
some (below) could not.

A setter acting concretely.

A getter acting concretely.

An event parameter acting concretely.

This meant that our ideal block language could not exist. Blocks would have to be allowed to act
as if they were concrete under certain circumstances.

Yail
There was also a problem with backwards compatibility wrt the Yail language, but that will be
discussed later. When the below systems were being designed, only the above issues were
known.

Possible Designs
After recognising the constraints of backwards compatibility we designed several systems that
compromised on aspects of our ideal system while still being backwards compatible.

Concrete System
The Concrete System was backwards compatible, but gave us none of the benefits of our ideal
system.

In this system all values which could be enums were instead concrete. This included getters,
setters, methods, event parameters, and dropdown blocks. For example the below dropdown
block would generate the concrete Yail code 1, and it could be used as a concrete value.

 generates 1

The advantages of this system were:

1)​ No Java code needed to be modified, which meant less work for us as language
developers.

The disadvantages of this system were:

1)​ We had no type safety at any of the language levels, which means it did not fulfill goal 2
of Operation Options.

An improvement to this system came from the observation that dropdown blocks were new
additions, which meant that they did not need to be backwards compatible. As such they could
be more abstract and type safe than the rest of the system.

Enums are Abstract System
The Enums are Abstract System was again backwards compatible, but it gave us some of the
benefits of our ideal system via the new dropdown blocks.

In this system the new dropdown blocks returned enum values, while everything else
continued to be concrete. This included getters, setters, methods, and event parameters.

com.google.appinventor.components.common.​
 HorizontalAlignment:Left

 1 or 3 or 2

In this system, dropdown blocks could not be used as concrete values, they were only allowed
to connect to blocks that accepted their specific type of enum.

This lead to the question of how we should deal with a situation like the above, where an enum
value is passed to a setter which expects a concrete value.

The solution to this came from the fact that a setter block represents a Java function, which is
called by Yail. Yail knows certain information about the Java function, such as which types it
expects. This allowed us to coerce the enum value returned by the dropdown block to a
concrete value before calling the Java function.

The advantages of this system were:

1)​ No Java code needed to be modified.
2)​ Dropdown blocks conformed to the ideal system.

The disadvantages of this system were:

1)​ Java was always receiving concrete values from Yail.

There were two systems we designed that fixed the above disadvantage, both of which involved
adding overloads to the Java code.

Two Systems System
The Two Systems System was again backwards compatible, and made no changes to the
blocks language presented in the previous system. But this system added a concept of function
overloads so that communication from Yail to Java could be in terms of abstract values.

In this system if an enum value was passed to a method or setter block that enum value was
passed directly into Java, instead of being coerced to a concrete value. Concrete values
were likewise passed directly to Java without being coerced. Getters, method return values, and
event parameters (ie values returned from Java) continued to be concrete.

This required method overloads within Java, meaning we needed functions with a single name
that could take in either a concrete value or an enum value. As stated earlier Yail has
information about the types a Java function expects, but currently it has no concept of
overloading. If we wanted to support this Two Systems System Yail would need to be heavily
modified to have an understanding of overloads.

The advantages of this system were:

1)​ Dropdown blocks still conformed to the ideal system
2)​ Abstract values are passed to Java, if available.

The disadvantages of this system were:

1)​ The Yail language needed to be modified to support overloads. Block code generation
also needed to be modified to reflect this.

2)​ The Java code needed to be modified with overloads for every setter and method which
should accept enums.

3)​ The communication from Yail to Java was still sometimes concrete.

The last system presents a solution to disadvantage 3, which makes all communication from
Yail to Java abstract.

Java is Abstract System
The Java is Abstract System is as close as we got to our ideal system, while still being
backwards compatible. Again the blocks language worked identically to the one originally
presented by the Enums are Abstract System, but instead of all communication from Yail to
Java being concrete, it was abstract.

In this system if a concrete value was passed to a method or setter, that concrete value would
be coerced to an enum before being passed to Java. Enum values were passed in directly,
because they were already abstract. Getters, method return values, and event parameters
continued to be concrete.

This system also required method overloads within Java, as we needed functions to accept
enum values, but could not remove the existing concrete functions because of backwards
compatibility with extensions. It did not require Yail to have any concept of overloads. Yail only
needed to know about the abstract version of a function, so we could use the existing system to
accomplish that.

The advantages of this system were:

1)​ Dropdown blocks still conformed to the ideal system
2)​ Enum values passed to Java were always abstract.

The disadvantages of this system were:

1)​ The Java code needed to be modified with overloads for every setter and method which
should accept enums.

2)​ Enum definitions would need to provide a static method to go from a concrete value to
an abstract value.

More Compatibility Problems
The systems presented above conform to our ideal system to varying degrees, but they all work
within the constraints set out in the Backwards Compatibility section. Sadly, there were issues
with compatibility that were not discovered until after these alternative systems were designed.

Forwards Compatibility: Dictionaries
None of the above systems supported dropdown blocks as dictionary keys in an intuitive way.

In the Concrete System dropdown blocks returned concrete values. So in the above example
we would get a dictionary that looks like the following:

{​
 1: "A",​
 3: "B",​
 2: "C"​
}

This is fine, unless we add another key to the dictionary which has the same concrete value as
a different key. For example this set of blocks:

Which generates a dictionary that looks like the following:

{​
 1: "A",​
 3: "B",​
 2: "C",​
 1: "B"​
}

The HorizontalAlignment.Left key is overwritten by the VerticalAlignment.Top key, even though
from the perspective of a developer working in the blocks language, it looks like they should not
conflict.

The other systems (Enums are Abstract, Two Systems, and Java is Abstract) worked differently
by having dropdown blocks return enum values. Sadly this causes problems when we want to
access values in an enum-keyed dictionary using a concrete lookup.

Consider the following situation where a developer using the blocks language wants to access
values tied to abstract keys using a getter which returns a concrete value:

This looks like it should be possible from the perspective of said developer, yet it is not possible
because our lookup is 1, 3, or 2 but our dictionary looks like the following:

{​
 HorizontalAlignment.Left: "A",​
 HorizontalAlignment.Center: "B",​
 HorizontalAlignment.Right: "C",​
}

In the case that our system is the Java is Abstract System we could coerce the concrete value
to an enum before doing the lookup, because Java is Abstract requires enums to declare a

static method for going from concrete values to abstract values. But this still causes problems if
we have two keys in the dictionary with the same concrete value:

If Screen1.AlignHorizontal returns 1, should we coerce it to a value of HorizontalAlignment.Left?
Or a value of VerticalAlignment.Top? This is undecidable.

A simple solution to these problems is to not allow dropdown blocks to be dictionary keys. But
this is disappointing as it would be handy for the user to be able to store state-based information
using those values.

Yail Backwards Compatibility
The second unknown compatibility problem we ran into was Yail. Put in simple terms, we could
not guarantee that an App Inventor user’s version of Yail would be up to date. This meant that
we could not include any new classes in Yail (including our enum definitions) and we could not
change any Yail function headers.

This meant that the only system that would work backwards compatibly with Yail was the
Concrete System, which provided us none of the advantages of our ideal system.

Final Plan
After discovering these other compatibility problems, we came up with a new 3-stage plan for
completing Operation Options.

1: Totally Concrete
The first stage of the plan was to implement the Concrete System because it was the only
system that was backwards compatible with the blocks language, Yail, and Java.

2: Sanitization & Abstraction
The second stage was meant to add support for dropdown blocks as dictionary keys. The
system was changed to act like the Enums are Abstract System. Dropdown blocks returned
enum values, but all communication from Yail to Java was concrete. Note that dropdown blocks
only returned enum values when we detected that the user had an updated version of Yail
(which supported our new enum definitions) otherwise the blocks still returned concrete values.

At this time we also added sanitization, which meant that when concrete values were passed
from Java to Yail we converted them to an enum value, if the method returning the value
supported doing so. Getters, method returns, and event parameters could now act abstractly
under some circumstances. This allowed us to support dropdown blocks as dictionary keys.

Once again take for example this set of blocks:

In this case our generated dictionary would look like the following:

{​
 HorizontalAlignment.Left: "A",​
 HorizontalAlignment.Center: "B",​
 HorizontalAlignment.Right: "C",​
 VerticalAlignment.Top: "D"​
}

But after stage 2 the value returned by Screen1.AlignHorizontal would be one of
HorizontalAlignment.Left, HorizontalAlignment.Center, or
HorizontalAlignment.Right (after sanitization), rather than a value of 1, 3, or 2. This meant
that we would no longer have conflicts.

3: Overloads
The final stage of the project was adding support for overloads in Yail as in the Two Systems
System. This would allow abstract enum values to be passed from Yail to Java in the case
where the user’s version of Yail supported enum values.

Stages 1 and 2 were completed by me (Beka Westberg) during my 2020 GSoC project, but
Stage 3 was not completed.

Advice for Stage 3
This section of the document is meant for a future person attempting to implement stage 3 of
this project. It includes some guidance to (hopefully) help you get started on completing this.

Preparation / Learning
If you have never written Scheme or Lisp it may be helpful to complete the first two SICP
lectures (1A and 1B). This is because you will be modifying the runtime.scm file, which is written
in Yail, a variant of Scheme.

You should also learn how Yail handles the coercion of values to different types. This logic lives
in the coerce-args procedure, which relies heavily on the coerce-arg function. These procedures
make sure that a value is of the desired type, so that it can be safely passed into Java. For
example the coerce-arg procedure will convert a value of “1” (which is a string) to a value of 1 (a
number) if a number is desired.

You should know the basics of how Blockly code generators work, because you will have to
modify the generators for the component blocks. You should familiarize yourself with those
specific generators in particular. All of those weird constants like YAIL_OPEN_COMBINATION
can be found in the yail.js file. Play around with it so you understand how the expected types get
passed to yail. The “Generate Yail” option in the right-click dropdown menu of blocks (when
you’re running the site in admin mode) will be helpful.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video-lectures/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-001-structure-and-interpretation-of-computer-programs-spring-2005/video-lectures/
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/buildserver/src/com/google/appinventor/buildserver/resources/runtime.scm#L1326
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/buildserver/src/com/google/appinventor/buildserver/resources/runtime.scm#L1344
https://developers.google.com/blockly/guides/create-custom-blocks/generating-code
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/blocklyeditor/src/generators/yail/componentblock.js
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/blocklyeditor/src/generators/yail.js

You should also know the basics of how Blockly connection checks work, and you should
familiarize yourself with the Blockly.Blocks.Utilities.YailTypeToBlocklyTypeMap which is where
App Inventors “type hierarchy” is defined. You will likely need to modify the component blocks
connection checks to support overloads.

You should check out the ComponentProcessor and get a grasp of how this reads the Java
component files and compiles data into a more usable structure. Then you should check out the
ComponentDescriptorGenerator which creates a simple_components.json file. This file tells the
Blockly system which component blocks it needs to make, and you will need to modify this to
contain information about overloads. The simple_components.json file is read by the
ComponentDatabase (js side) so that the information is made available to Blockly, so you
should also familiarize yourself with how this works.

Design Work
You should have a discussion with the dev team about whether you want to support all
overloads, or just overloads for enums vs their underlying types.

If you decide to support overloads in general, here are some edge cases you should consider

https://developers.google.com/blockly/guides/create-custom-blocks/type-checks
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/blocklyeditor/src/blocks/utilities.js#L29
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/blocklyeditor/src/blocks/components.js
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/components/src/com/google/appinventor/components/scripts/ComponentProcessor.java
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/components/src/com/google/appinventor/components/scripts/ComponentDescriptorGenerator.java
https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/blocklyeditor/src/component_database.js#L95

Two different types. This is the simple case.

@SimpleFunction​
public void Foo(String st) { }​
​
@SimpleFunction​
public void Foo(boolean bl) { }

Different numbers of types. This would be hard to make work in the blocks. I recommend not
allowing it.

@SimpleFunction​
public void Foo(String st) { }​
​
@SimpleFunction​
public void Foo(String st, boolean bl) { }

Multiple different types. You don’t want to allow a combination of int & bool in the blocks. This
would be hard to get working correctly with the type checking system. I recommend not allowing
this either.

@SimpleFunction​
public void Foo(String st, boolean bl) { }​
​
@SimpleFunction​
public void Foo(int in, String st) { }

All limitations you want to introduce should be handled via the ComponentProcessor. These
cases should throw clear errors to help extension developers (or built-in component developers
for that matter) know what to fix.

You should also be aware that overrides (not necessarily overloads) have special behavior in
terms of component definitions. See this comment for more information. You should make sure
that your solution is backwards compatible with this behavior.

https://github.com/mit-cml/appinventor-sources/blob/3972f885362cbf3418b081d68b0a9e65cdaf2b63/appinventor/components/src/com/google/appinventor/components/scripts/ComponentProcessor.java#L1708

Implementation
Implementation will be highly dependent on the choices you make in the design phase. But you
will probably need to modify the following things:

●​ Modify ComponentDescriptorGenerator so that it exports information about parameters
having multiple available types.

●​ Modify block checks so that they support accepting multiple types.
●​ Modify code generators so they export information about what types their inputs can

accept.
●​ Modify coerce-args so that it can work with parameters of multiple types.

Best of luck! And I hope this document has helped you get started on your project =)

	Operation Options: A Story of Language Design
	Video
	Languages in App Inventor
	Operation Options
	Ideal Solution
	Backwards Compatibility
	Java
	Blocks
	Yail

	Possible Designs
	Concrete System
	Enums are Abstract System
	Two Systems System
	Java is Abstract System

	More Compatibility Problems
	Forwards Compatibility: Dictionaries
	Yail Backwards Compatibility

	Final Plan
	1: Totally Concrete
	2: Sanitization & Abstraction
	3: Overloads

	Advice for Stage 3
	Preparation / Learning
	Design Work
	
	Implementation

