

ABSTRACT

Library is place where all kind of books are available. Intranet Library

Management system is a web based application. This system contains list of all the

books and can be accessed by remote users concurrently from any where in the

campus. But for that users must be registered user. This system is three tier

architecture.

 Client sends requests, on receiving the request the server processes it

and extracts the data from database and sends the result back to the client. This

system provides separate interface and login for librarian, students and faculties.

Librarian can modify database.

 Users can search for books and renewal books online. They can

recommend for new books by just sending messages to the librarian from any

where in the college. They can view the issue and return dates of any book and due

they have to pay. This system generates reports that can be used in analyzing the

library performance. Thus the management can take appropriate steps to improve

the facilities.

INDEX

​

 S. N CONTENTS

​ ​

1.​ INTRODUCTION​

 2. ANALYSIS

 2.1 SYSTEM ANALYSIS

 2.2 SYSTEM SPECIFICATIONS

​​ 3. DESIGN APPROACH

​​​ ​ 3.1 INTRODUCTION TO DESIGN

​​ 3.2 UML DIAGRAMS

​​ 3.3 DATA FLOW DIAGRAMS

​​ 3.4 E-R DIAGRAMS

​​ 4. PROJECT MODULES

​​ 5. IMPLEMENTATION

​​ 4.1 CONCEPTS AND TECHNIQUES

​​ 4.2 TESTING

​​ 4.2.1 TEST CASES

​​ 6. OUTPUT SCREENS​

 7. CONCLUSION​ ​ ​ ​ ​ ​

 8. FUTURE ENHANCEMENTS

 9. BIBILIOGRAPHY ​

 INTRODUCTION:

 Library Management System consists of list of records about the

management of the details of the students and the issues going on and also about some

books and all. This is a web-based application. The project has three modules namely-

User, Registration, Librarian. According to the Modules the Distributor and Sub

Distributors can manage and do their activities in easy manner.

 As the modern organizations are automated and computers are working as per

the instructions, it becomes essential for the coordination of human beings, commodity

and computers in a modern organization. This information helps the distributors to

purchase or sale the products very efficiently.

 The administrators and all the others can communicate with the system through

this project, thus facilitating effective implementation and monitoring of various activities

of the distributor of a supermarket.

SYSTEM ANALYSIS:

1. Existing System

. Various problems of physical system are described below :-

●​ If one is not very careful then there is a possibility of issuing more than one

book to a user.

●​ There is a possibility of issuing a book to a user, whose membership is not

there.

●​ When a user requests for the a book, one has to physically check for the

presence of a book in the library

●​ Answering management query is a time consuming process.

●​ Daily keeping a manual record of changes taking place in the library such as

book being issued, book being returned etc can become cumbersome if the

Library size is bigger.

2. Proposed System

The LIBRARY MANAGEMENT SYSTEM is a software application which

avoids more manual hours in taking the book, that need to spend in record keeping

and generating reports. Maintaining of user details is complex in manual system in

terms of agreements, royalty and activities. This all have to be maintained in ledgers

or books. Co-coordinators needs to verify each record for small information also.

●​ Easy search of book in the online library.

●​ Avoid the manual work.

●​ User need not go to the library for Issue any kind of book, he can renewal the

book online.

3. Objective of the System

The goal of the system is to bring down the work load with the increased

efficiency and to speed up the activities. With this it is very easy to process course fee

that is collected time to time from students who are registered and studying at

franchisees.

 System Specifications

Hardware Requirements:-

●​ Pentium-IV(Processor).

●​ 256 MB Ram

●​ 512 KB Cache Memory

●​ Hard disk 10 GB

●​ Microsoft Compatible 101 or more Key Board

Software Requirements: -

●​ Operating System : Windows 95/98/XP with MS-office

●​ Programming language: .NET2.0, VISUAL STUDIO2005

●​ Web-Technology : ASP.NET

●​ Back-End : SQL SERVER 2005

●​ Web Server : IIS.

​

INTRODUCTION:

 Design is the first step in the development phase for any

techniques and principles for the purpose of defining a device, a process or system in

sufficient detail to permit its physical realization.

 Once the software requirements have been analyzed and

specified the software design involves three technical activities - design, coding,

implementation and testing that are required to build and verify the software.

 The design activities are of main importance in this phase,

because in this activity, decisions ultimately affecting the success of the software

implementation and its ease of maintenance are made. These decisions have the final

bearing upon reliability and maintainability of the system. Design is the only way to

accurately translate the customer’s requirements into finished software or a system.

 Design is the place where quality is fostered in

development. Software design is a process through which requirements are translated into

a representation of software. Software design is conducted in two steps. Preliminary

design is concerned with the transformation of requirements into data.

UML Diagrams:

Actor:​

 ​ A coherent set of roles that users of use cases play when interacting with the use

`cases.

 Use case:

 A description of sequence of actions, including variants, that a system

performs that yields an observable result of value of an actor.​

UML stands for Unified Modeling Language. UML is a language for specifying,

visualizing and documenting the system. This is the step while developing any product

after analysis. The goal from this is to produce a model of the entities involved in the

project which later need to be built. The representation of the entities that are to be used

in the product being developed need to be designed.

​ ​ There are various kinds of methods in software design:

They are as follows:

�​ Use case Diagram

�​ Sequence Diagram

�​ Collaboration Diagram

�​ Activity Diagram

�​ State chat Diagram

USECASE DIAGRAMS:​

​ ​

Use case diagrams model behavior within a system and helps the

developers understand of what the user require. The stick man represents what’s

called an actor.

​ ​ Use case diagram can be useful for getting an overall view of the system

and clarifying who can do and more importantly what they can’t do.

​ ​ Use case diagram consists of use cases and actors and shows the

interaction between the use case and actors.

●​ The purpose is to show the interactions between the use case and actor.

●​ To represent the system requirements from user’s perspective.

●​ An actor could be the end-user of the system or an external system.

USECASE DIAGRAM:

A Use case is a description of set of sequence of actions. Graphically it is

rendered as an ellipse with solid line including only its name. Use case diagram is a

behavioral diagram that shows a set of use cases and actors and their relationship. It is an

association between the use cases and actors. An actor represents a real-world object.

Primary Actor – Sender, Secondary ActorReceiver.

.

SEQUENCE DIAGRAM:

Sequence diagram and collaboration diagram are called INTERACTION

DIAGRAMS. An interaction diagram shows an interaction, consisting of set of objects

and their relationship including the messages that may be dispatched among them.

​ A sequence diagram is an introduction that empathizes the time ordering of

messages. Graphically a sequence diagram is a table that shows objects arranged along

the X-axis and messages ordered in increasing time along the Y-axis

State Chart Diagram

​

DATA FLOW DIAGRAMS:

 The DFD takes an input-process-output view of a system i.e. data objects flow

into the software, are transformed by processing elements, and resultant data objects flow

out of the software.

 Data objects represented by labeled arrows and transformation are

represented by circles also called as bubbles. DFD is presented in a hierarchical fashion

i.e. the first data flow model represents the system as a whole. Subsequent DFD refine the

context diagram (level 0 DFD), providing increasing details with each subsequent level.

 The DFD enables the software engineer to develop models of the

information domain & functional domain at the same time. As the DFD is refined into

greater levels of details, the analyst perform an implicit functional decomposition of the

system. At the same time, the DFD refinement results in a corresponding refinement of

the data as it moves through the process that embody the applications.

 A context-level DFD for the system the primary external entities produce

information for use by the system and consume information generated by the system. The

labeled arrow represents data objects or object hierarchy.

RULES FOR DFD:

●​ Fix the scope of the system by means of context diagrams.

●​ Organize the DFD so that the main sequence of the actions

●​ Reads left to right and top to bottom.

●​ Identify all inputs and outputs.

●​ Identify and label each process internal to the system with Rounded circles.

●​ A process is required for all the data transformation and Transfers. Therefore,

never connect a data store to a data Source or the destinations or another data

store with just a Data flow arrow.

●​ Do not indicate hardware and ignore control information.

●​ Make sure the names of the processes accurately convey everything the

process is done.

●​ There must not be unnamed process.

●​ Indicate external sources and destinations of the data, with Squares.

●​ Number each occurrence of repeated external entities.

●​ Identify all data flows for each process step, except simple Record retrievals.

●​ Label data flow on each arrow.

●​ Use details flow on each arrow.

●​ Use the details flow arrow to indicate data movements.

E-R Diagrams:

 The Entity-Relationship (ER) model was originally proposed by Peter in 1976 [Chen76] as a

way to unify the network and relational database views. Simply stated the ER model is a

conceptual data model that views the real world as entities and relationships. A basic component

of the model is the Entity-Relationship diagram which is used to visually represents data objects.

Since Chen wrote his paper the model has been extended and today it is commonly used for

database design For the database designer, the utility of the ER model is:

●​ it maps well to the relational model. The constructs used in the ER model can easily be

transformed into relational tables.

●​ it is simple and easy to understand with a minimum of training. Therefore, the model can

be used by the database designer to communicate the design to the end user.

●​ In addition, the model can be used as a design plan by the database developer to

implement a data model in a specific database management software.

Connectivity and Cardinality

The basic types of connectivity for relations are: one-to-one, one-to-many, and

many-to-many. A one-to-one (1:1) relationship is when at most one instance of a entity A is

associated with one instance of entity B. For example, "employees in the company are each

assigned their own office. For each employee there exists a unique office and for each office there

exists a unique employee.

A one-to-many (1:N) relationships is when for one instance of entity A, there are zero,

one, or many instances of entity B, but for one instance of entity B, there is only one

instance of entity A. An example of a 1:N relationships is a department has many

employees each employee is assigned to one department.

A many-to-many (M:N) relationship, sometimes called non-specific, is when for one instance of

entity A, there are zero, one, or many instances of entity B and for one instance of entity B there

are zero, one, or many instances of entity A. The connectivity of a relationship describes the

mapping of associated

ER Notation

 There is no standard for representing data objects in ER diagrams. Each modeling

methodology uses its own notation. The original notation used by Chen is widely used in

academics texts and journals but rarely seen in either CASE tools or publications by

non-academics. Today, there are a number of notations used, among the more common are

Bachman, crow's foot, and IDEFIX.

 All notational styles represent entities as rectangular boxes and relationships as lines

connecting boxes. Each style uses a special set of symbols to represent the cardinality of a

connection. The notation used in this document is from Martin. The symbols used for the basic

ER constructs are:

▪​ entities are represented by labeled rectangles. The label is the name of the entity. Entity

names should be singular nouns.

▪​ relationships are represented by a solid line connecting two entities. The name of the

relationship is written above the line. Relationship names should be verbs

▪​ attributes, when included, are listed inside the entity rectangle. Attributes which are

identifiers are underlined. Attribute names should be singular nouns.

▪​ cardinality of many is represented by a line ending in a crow's foot. If the crow's foot is

omitted, the cardinality is one.

▪​ existence is represented by placing a circle or a perpendicular bar on the line. Mandatory

existence is shown by the bar (looks like a 1) next to the entity for an instance is required.

Optional existence is shown by placing a circle next to the entity that is optional

PROJECT MODULES

MODULES USED:-

The proposed system categories and follows these modules to implement

Login component

1.​ Administrator(Head office manager)

2.​ Librarian

3.​ User

Administrator Component

1.​ Administrator

Librarian Manager Component

1.​ Librarian Manager

Student Component

1.​ Books Details

2.​ Issue Details

MODULES DESCRIPSTION:-
 User: Using login id and password user can the use Library online

where users can search for books and renewal books online. They can recommend

for new books by just sending messages to the librarian from any where in the

college. They can view the issue and return dates of any book and due they have to

pay.

 Registration: In the Registration module, user has to register himself by

supplying his personal information which gets store in data base which are using as

backend. By registering himself user will get his login id and Password so that he

can access Library online. Separate Register form should be designed for separate

user

(Student, Faculty, Librarian) and separate login has to provided for each user. For

example if the users are students then student id should be SH001.

 Librarian: Librarian is a person who manages the Library. Librarian

has the permission that he can access the database. There are some tasks which are

performed by the Librarian like:

▪​ Addition of a new book.

▪​ Modification of the book.

▪​ Deletion of the book.

▪​ Searching of the book.

▪​ Managing User

OVERVIEW OF TECHNOLOGIES USED

Front End Technology

Microsoft .NET Framework

The .NET Framework is a new computing platform that simplifies application

development in the highly distributed environment of the Internet. The .NET

Framework is designed to fulfill the following objectives:

●​ To provide a consistent object-oriented programming environment whether

object code is stored and executed locally, executed locally but

Internet-distributed, or executed remotely.

●​ To provide a code-execution environment that minimizes software

deployment and versioning conflicts.

●​ To provide a code-execution environment that guarantees safe execution of

code, including code created by an unknown or semi-trusted third party.

●​ To provide a code-execution environment that eliminates the performance

problems of scripted or interpreted environments.

●​ To make the developer experience consistent across widely varying types of

applications, such as Windows-based applications and Web-based

applications.

●​ To build all communication on industry standards to ensure that code based on

the .NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime and

the .NET Framework class library. The common language runtime is the foundation

of the .NET Framework. You can think of the runtime as an agent that manages code

at execution time, providing core services such as memory management, thread

management, and remoting, while also enforcing strict type safety and other forms of

code accuracy that ensure security and robustness. In fact, the concept of code

management is a fundamental principle of the runtime. Code that targets the runtime

is known as managed code, while code that does not target the runtime is known as

unmanaged code. The class library, the other main component of the .NET

Framework, is a comprehensive, object-oriented collection of reusable types that you

can use to develop applications ranging from traditional command-line or graphical

user interface (GUI) applications to applications based on the latest innovations

provided by ASP.NET, such as Web Forms and XML Web services.

The .NET Framework can be hosted by unmanaged components that load the

common language runtime into their processes and initiate the execution of managed

code, thereby creating a software environment that can exploit both managed and

unmanaged features. The .NET Framework not only provides several runtime hosts,

but also supports the development of third-party runtime hosts.

For example, ASP.NET hosts the runtime to provide a scalable, server-side

environment for managed code. ASP.NET works directly with the runtime to enable

Web Forms applications and XML Web services, both of which are discussed later in

this topic.

Internet Explorer is an example of an unmanaged application that hosts the

runtime (in the form of a MIME type extension). Using Internet Explorer to host the

runtime enables you to embed managed components or Windows Forms controls in

HTML documents. Hosting the runtime in this way makes managed mobile code

(similar to Microsoft® ActiveX® controls) possible, but with significant

improvements that only managed code can offer, such as semi-trusted execution and

secure isolated file storage.

The following illustration shows the relationship of the common language

runtime and the class library to your applications and to the overall system. The

illustration also shows how managed code operates within a larger architecture.

Features of the Common Language Runtime:-

The common language runtime manages memory, thread execution, code

execution, code safety verification, compilation, and other system services. These

features are intrinsic to the managed code that runs on the common language runtime.

With regards to security, managed components are awarded varying degrees of trust,

depending on a number of factors that include their origin (such as the Internet,

enterprise network, or local computer). This means that a managed component might

or might not be able to perform file-access operations, registry-access operations, or

other sensitive functions, even if it is being used in the same active application.

The runtime enforces code access security. For example, users can trust that an

executable embedded in a Web page can play an animation on screen or sing a song,

but cannot access their personal data, file system, or network. The security features of

the runtime thus enable legitimate Internet-deployed software to be exceptionally

featuring rich.

The runtime also enforces code robustness by implementing a strict type- and

code-verification infrastructure called the common type system (CTS). The CTS

ensures that all managed code is self-describing. The various Microsoft and

third-party language compilers generate managed code that conforms to the CTS.

This means that managed code can consume other managed types and instances,

while strictly enforcing type fidelity and type safety.

In addition, the managed environment of the runtime eliminates many

common software issues. For example, the runtime automatically handles object

layout and manages references to objects, releasing them when they are no longer

being used. This automatic memory management resolves the two most common

application errors, memory leaks and invalid memory references.

The runtime also accelerates developer productivity. For example,

programmers can write applications in their development language of choice, yet take

full advantage of the runtime, the class library, and components written in other

languages by other developers. Any compiler vendor who chooses to target the

runtime can do so. Language compilers that target the .NET Framework make the

features of the .NET Framework available to existing code written in that language,

greatly easing the migration process for existing applications.

While the runtime is designed for the software of the future, it also supports

software of today and yesterday. Interoperability between managed and unmanaged

code enables developers to continue to use necessary COM components and DLLs.

The runtime is designed to enhance performance. Although the common language

runtime provides many standard runtime services, managed code is never interpreted.

A feature called just-in-time (JIT) compiling enables all managed code to run in the

native machine language of the system on which it is executing. Meanwhile, the

memory manager removes the possibilities of fragmented memory and increases

memory locality-of-reference to further increase performance.

Finally, the runtime can be hosted by high-performance, server-side

applications, such as Microsoft® SQL Server™ and Internet Information Services

(IIS). This infrastructure enables you to use managed code to write your business

logic, while still enjoying the superior performance of the industry's best enterprise

servers that support runtime hosting.

.NET Framework Class Library:-

The .NET Framework class library is a collection of reusable types that tightly

integrate with the common language runtime. The class library is object oriented,

providing types from which your own managed code can derive functionality. This

not only makes the .NET Framework types easy to use, but also reduces the time

associated with learning new features of the .NET Framework. In addition, third-party

components can integrate seamlessly with classes in the .NET Framework.

For example, the .NET Framework collection classes implement a set of

interfaces that you can use to develop your own collection classes. Your collection

classes will blend seamlessly with the classes in the .NET Framework.

As you would expect from an object-oriented class library, the .NET

Framework types enable you to accomplish a range of common programming tasks,

including tasks such as string management, data collection, database connectivity, and

file access. In addition to these common tasks, the class library includes types that

support a variety of specialized development scenarios. For example, you can use the

.NET Framework to develop the following types of applications and services:

●​ Console applications.

●​ Scripted or hosted applications.

●​ Windows GUI applications (Windows Forms).

●​ ASP.NET applications.

●​ XML Web services.

●​ Windows services.

For example, the Windows Forms classes are a comprehensive set of reusable types

that vastly simplify Windows GUI development. If you write an ASP.NET Web Form

application, you can use the Web Forms classes.

Client Application Development:-

Client applications are the closest to a traditional style of application in

Windows-based programming. These are the types of applications that display

windows or forms on the desktop, enabling a user to perform a task. Client

applications include applications such as word processors and spreadsheets, as well as

custom business applications such as data-entry tools, reporting tools, and so on.

Client applications usually employ windows, menus, buttons, and other GUI

elements, and they likely access local resources such as the file system and

peripherals such as printers.

Another kind of client application is the traditional ActiveX control (now

replaced by the managed Windows Forms control) deployed over the Internet as a

Web page. This application is much like other client applications: it is executed

natively, has access to local resources, and includes graphical elements.

In the past, developers created such applications using C/C++ in conjunction

with the Microsoft Foundation Classes (MFC) or with a rapid application

development (RAD) environment such as Microsoft® Visual Basic®. The .NET

Framework incorporates aspects of these existing products into a single, consistent

development environment that drastically simplifies the development of client

applications. The Windows Forms classes contained in the .NET Framework are

designed to be used for GUI development. You can easily create command windows,

buttons, menus, toolbars, and other screen elements with the flexibility necessary to

accommodate shifting business needs.

For example, the .NET Framework provides simple properties to adjust visual

attributes associated with forms. In some cases the underlying operating system does

not support changing these attributes directly, and in these cases the .NET Framework

automatically recreates the forms. This is one of many ways in which the .NET

Framework integrates the developer interface, making coding simpler and more

consistent.

Unlike ActiveX controls, Windows Forms controls have semi-trusted access

to a user's computer. This means that binary or natively executing code can access

some of the resources on the user's system (such as GUI elements and limited file

access) without being able to access or compromise other resources. Because of code

access security, many applications that once needed to be installed on a user's system

can now be safely deployed through the Web. Your applications can implement the

features of a local application while being deployed like a Web page.

Server Application Development:-

Server-side applications in the managed world are implemented through

runtime hosts. Unmanaged applications host the common language runtime, which

allows your custom managed code to control the behavior of the server. This model

provides you with all the features of the common language runtime and class library

while gaining the performance and scalability of the host server.

The following illustration shows a basic network schema with managed code

running in different server environments. Servers such as IIS and SQL Server can

perform standard operations while your application logic executes through the

managed code.

Server-side managed code:-

ASP.NET is the hosting environment that enables developers to use the .NET

Framework to target Web-based applications. However, ASP.NET is more than just a

runtime host; it is a complete architecture for developing Web sites and

Internet-distributed objects using managed code. Both Web Forms and XML Web

services use IIS and ASP.NET as the publishing mechanism for applications, and both

have a collection of supporting classes in the .NET Framework.

XML Web services, an important evolution in Web-based technology, are

distributed, server-side application components similar to common Web sites.

However, unlike Web-based applications, XML Web services components have no UI

and are not targeted for browsers such as Internet Explorer and Netscape Navigator.

Instead, XML Web services consist of reusable software components designed to be

consumed by other applications, such as traditional client applications, Web-based

applications, or even other XML Web services. As a result, XML Web services

technology is rapidly moving application development and deployment into the

highly distributed environment of the Internet.

If you have used earlier versions of ASP technology, you will immediately

notice the improvements that ASP.NET and Web Forms offers. For example, you can

develop Web Forms pages in any language that supports the .NET Framework. In

addition, your code no longer needs to share the same file with your HTTP text

(although it can continue to do so if you prefer). Web Forms pages execute in native

machine language because, like any other managed application, they take full

advantage of the runtime. In contrast, unmanaged ASP pages are always scripted and

interpreted. ASP.NET pages are faster, more functional, and easier to develop than

unmanaged ASP pages because they interact with the runtime like any managed

application.

The .NET Framework also provides a collection of classes and tools to aid in

development and consumption of XML Web services applications. XML Web

services are built on standards such as SOAP (a remote procedure-call protocol),

XML (an extensible data format), and WSDL (the Web Services Description

Language). The .NET Framework is built on these standards to promote

interoperability with non-Microsoft solutions.

For example, the Web Services Description Language tool included with the

.NET Framework SDK can query an XML Web service published on the Web, parse

its WSDL description, and produce C# or Visual Basic source code that your

application can use to become a client of the XML Web service. The source code can

create classes derived from classes in the class library that handle all the underlying

communication using SOAP and XML parsing. Although you can use the class

library to consume XML Web services directly, the Web Services Description

Language tool and the other tools contained in the SDK facilitate your development

efforts with the .NET Framework.

If you develop and publish your own XML Web service, the .NET Framework

provides a set of classes that conform to all the underlying communication standards,

such as SOAP, WSDL, and XML. Using those classes enables you to focus on the

logic of your service, without concerning yourself with the communications

infrastructure required by distributed software development.

Finally, like Web Forms pages in the managed environment, your XML Web service

will run with the speed of native machine language using the scalable communication

of IIS.

Active Server Pages.NET:-

ASP.NET is a programming framework built on the common language runtime that

can be used on a server to build powerful Web applications. ASP.NET offers several

important advantages over previous Web development models:

●​ Enhanced Performance:

​ ​ ​ ​ ​ ASP.NET is compiled common language runtime code

running on the server. Unlike its interpreted predecessors, ASP.NET can take

advantage of early binding, just-in-time compilation, native optimization, and caching

services right out of the box. This amounts to dramatically better performance before

you ever write a line of code.

●​ World-Class Tool Support:

 The ASP.NET framework is complemented by a rich toolbox and designer

in the Visual Studio integrated development environment. WYSIWYG editing,

drag-and-drop server controls, and automatic deployment are just a few of the

features this powerful tool provides.

●​ Power and Flexibility:

 ​ Because ASP.NET is based on the common language runtime, the power

and flexibility of that entire platform is available to Web application developers. The

.NET Framework class library, Messaging, and Data Access solutions are all

seamlessly accessible from the Web. ASP.NET is also language-independent, so you

can choose the language that best applies to your application or partition your

application across many languages. Further, common language runtime

interoperability guarantees that your existing investment in COM-based development

is preserved when migrating to ASP.NET.

●​ Simplicity:

 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

ASP.NET makes it easy to perform common tasks, from simple form submission and

client authentication to deployment and site configuration. For example, the

ASP.NET page framework allows you to build user interfaces that cleanly separate

application logic from presentation code and to handle events in a simple, Visual

Basic - like forms processing model. Additionally, the common language runtime

simplifies development, with managed code services such as automatic reference

counting and garbage collection.

●​ Manageability:

 ASP.NET employs a text-based, hierarchical configuration system, which

simplifies applying settings to your server environment and Web applications.

Because configuration information is stored as plain text, new settings may be applied

without the aid of local administration tools. This "zero local administration"

philosophy extends to deploying ASP.NET Framework applications as well. An

ASP.NET Framework application is deployed to a server simply by copying the

necessary files to the server. No server restart is required, even to deploy or replace

running compiled code.

●​ Scalability and Availability:

 ASP.NET has been designed with scalability in mind, with features

specifically tailored to improve performance in clustered and multiprocessor

environments. Further, processes are closely monitored and managed by the

ASP.NET runtime, so that if one misbehaves (leaks, deadlocks), a new process can be

created in its place, which helps keep your application constantly available to handle

requests.

●​ Customizability and Extensibility:

 ​ ​ ASP.NET delivers a well-factored architecture that allows developers

to "plug-in" their code at the appropriate level. In fact, it is possible to extend or

replace any subcomponent of the ASP.NET runtime with your own custom-written

component. Implementing custom authentication or state services has never been

easier.

●​ Security:

 With built in Windows authentication and per-application configuration,

you can be assured that your applications are secure.

Language Support

The Microsoft .NET Platform currently offers built-in support for three

languages: C#, Visual Basic, and JScript.

What is ASP.NET Web Forms?

The ASP.NET Web Forms page framework is a scalable common language

runtime programming model that can be used on the server to dynamically generate

Web pages.

Intended as a logical evolution of ASP (ASP.NET provides syntax

compatibility with existing pages), the ASP.NET Web Forms framework has been

specifically designed to address a number of key deficiencies in the previous model.

In particular, it provides:

●​ The ability to create and use reusable UI controls that can encapsulate

common functionality and thus reduce the amount of code that a page

developer has to write.

●​ The ability for developers to cleanly structure their page logic in an orderly

fashion (not "spaghetti code").

●​ The ability for development tools to provide strong WYSIWYG design

support for pages (existing ASP code is opaque to tools).

ASP.NET Web Forms pages are text files with an .aspx file name extension.

They can be deployed throughout an IIS virtual root directory tree. When a browser

client requests .aspx resources, the ASP.NET runtime parses and compiles the target

file into a .NET Framework class. This class can then be used to dynamically process

incoming requests. (Note that the .aspx file is compiled only the first time it is

accessed; the compiled type instance is then reused across multiple requests).

An ASP.NET page can be created simply by taking an existing HTML file and

changing its file name extension to .aspx (no modification of code is required). For

example, the following sample demonstrates a simple HTML page that collects a

user's name and category preference and then performs a form post back to the

originating page when a button is clicked:

ASP.NET provides syntax compatibility with existing ASP pages. This

includes support for <% %> code render blocks that can be intermixed with HTML

content within an .aspx file. These code blocks execute in a top-down manner at page

render time.

Code-Behind Web Forms

ASP.NET supports two methods of authoring dynamic pages. The first is the

method shown in the preceding samples, where the page code is physically declared

within the originating .aspx file. An alternative approach--known as the code-behind

method--enables the page code to be more cleanly separated from the HTML content

into an entirely separate file.

Introduction to ASP.NET Server Controls

In addition to (or instead of) using <% %> code blocks to program dynamic

content, ASP.NET page developers can use ASP.NET server controls to program Web

pages. Server controls are declared within an .aspx file using custom tags or intrinsic

HTML tags that contain a runat="server" attributes value. Intrinsic HTML tags are

handled by one of the controls in the System.Web.UI.HtmlControls namespace.

Any tag that doesn't explicitly map to one of the controls is assigned the type of

System.Web.UI.HtmlControls.HtmlGenericControl.

Server controls automatically maintain any client-entered values between round trips

to the server. This control state is not stored on the server (it is instead stored within

an <input type="hidden"> form field that is round-tripped between requests). Note

also that no client-side script is required.

In addition to supporting standard HTML input controls, ASP.NET enables

developers to utilize richer custom controls on their pages. For example, the

following sample demonstrates how the <asp:adrotator> control can be used to

dynamically display rotating ads on a page.

1.​ ASP.NET Web Forms provide an easy and powerful way to build dynamic

Web UI.

2.​ ASP.NET Web Forms pages can target any browser client (there are no script

library or cookie requirements).

3.​ ASP.NET Web Forms pages provide syntax compatibility with existing ASP

pages.

4.​ ASP.NET server controls provide an easy way to encapsulate common

functionality.

5.​ ASP.NET ships with 45 built-in server controls. Developers can also use

controls built by third parties.

6.​ ASP.NET server controls can automatically project both up level and down

level HTML.

7.​ ASP.NET templates provide an easy way to customize the look and feel of list

server controls.

8.​ ASP.NET validation controls provide an easy way to do declarative client or

server data validation.

Crystal Reports

Crystal Reports for Visual Basic .NET is the standard reporting tool for Visual

Basic.NET; it brings the ability to create interactive, presentation-quality content —

which has been the strength of Crystal Reports for years — to the .NET platform.

With Crystal Reports for Visual Basic.NET, you can host reports on Web and

Windows platforms and publish Crystal reports as Report Web Services on a Web

server.

To present data to users, you could write code to loop through record sets and

print them inside your Windows or Web application. However, any work beyond

basic formatting can be complicated: consolidations, multiple level totals, charting,

and conditional formatting are difficult to program.

With Crystal Reports for Visual Studio .NET, you can quickly create complex

and professional-looking reports. Instead of coding, you use the Crystal Report

Designer interface to create and format the report you need. The powerful Report

Engine processes the formatting, grouping, and charting criteria you specify.

Report Experts

Using the Crystal Report Experts, you can quickly create reports based on your

development needs:

Choose from report layout options ranging from standard reports to form letters, or

build your own report from scratch.

●​ Display charts that users can drill down on to view detailed report data.

●​ Calculate summaries, subtotals, and percentages on grouped data.

●​ Show TopN or BottomN results of data.

●​ Conditionally format text and rotate text objects.

BACK END TECHNOLOGY:

About Microsoft SQL Server 2000

Microsoft SQL Server is a Structured Query Language (SQL) based, client/server

relational database. Each of these terms describes a fundamental part of the

architecture of SQL Server.

Database

A database is similar to a data file in that it is a storage place for data. Like a data file,

a database does not present information directly to a user; the user runs an application

that accesses data from the database and presents it to the user in an understandable

format.

A database typically has two components: the files holding the physical database and

the database management system (DBMS) software that applications use to access

data. The DBMS is responsible for enforcing the database structure, including:

●​ Maintaining the relationships between data in the database.

●​ Ensuring that data is stored correctly and that the rules defining data

relationships are not violated.

●​ Recovering all data to a point of known consistency in case of system

failures.

Relational Database

There are different ways to organize data in a database but relational databases

are one of the most effective. Relational database systems are an application of

mathematical set theory to the problem of effectively organizing data. In a relational

database, data is collected into tables (called relations in relational theory).

When organizing data into tables, you can usually find many different ways to

define tables. Relational database theory defines a process, normalization, which

ensures that the set of tables you define will organize your data effectively.

Client/Server:-

In a client/server system, the server is a relatively large computer in a central

location that manages a resource used by many people. When individuals need to use

the resource, they connect over the network from their computers, or clients, to the

server.

Examples of servers are: In a client/server database architecture, the database

files and DBMS software reside on a server. A communications component is

provided so applications can run on separate clients and communicate to the database

server over a network. The SQL Server communication component also allows

communication between an application running on the server and SQL Server.

Server applications are usually capable of working with several clients at the

same time. SQL Server can work with thousands of client applications

simultaneously. The server has features to prevent the logical problems that occur if a

user tries to read or modify data currently being used by others.

While SQL Server is designed to work as a server in a client/server network, it

is also capable of working as a stand-alone database directly on the client. The

scalability and ease-of-use features of SQL Server allow it to work efficiently on a

client without consuming too many resources.

Structured Query Language (SQL):-

To work with data in a database, you must use a set of commands and

statements (language) defined by the DBMS software. There are several different

languages that can be used with relational databases; the most common is SQL. Both

the American National Standards Institute (ANSI) and the International Standards

Organization (ISO) have defined standards for SQL. Most modern DBMS products

support the Entry Level of SQL-92, the latest SQL standard (published in 1992).

SQL Server Features

Microsoft SQL Server supports a set of features that result in the following benefits:

Ease of installation, deployment, and use

SQL Server includes a set of administrative and development tools that improve your

ability to install, deploy, manage, and use SQL Server across several sites.

Scalability

The same database engine can be used across platforms ranging from laptop

computers running Microsoft Windows® 95/98 to large, multiprocessor servers

running Microsoft Windows NT®, Enterprise Edition.

Data warehousing

SQL Server includes tools for extracting and analyzing summary data for online

analytical processing (OLAP). SQL Server also includes tools for visually designing

databases and analyzing data using English-based questions.

System integration with other server software

SQL Server integrates with e-mail, the Internet, and Windows.

Databases

A database in Microsoft SQL Server consists of a collection of tables that contain

data, and other objects, such as views, indexes, stored procedures, and triggers,

defined to support activities performed with the data. The data stored in a database is

usually related to a particular subject or process, such as inventory information for a

manufacturing warehouse.

SQL Server can support many databases, and each database can store either

interrelated data or data unrelated to that in the other databases. For example, a server

can have one database that stores personnel data and another that stores

product-related data. Alternatively, one database can store current customer order

data, and another; related database can store historical customer orders that are used

for yearly reporting. Before you create a database, it is

important to understand the parts of a database and how to design these parts to

ensure that the database performs well after it is implemented.

Normalization theory:

Relations are to be normalized to avoid anomalies. In insert, update and delete

operations. Normalization theory is built around the concept of normal forms. A

relation is said to be in a particular form if it satisfies a certain specified set if

constraints. To decide a suitable logical structure for given database design the

concept of normalization, which are briefly described below.

1.​ 1 st Normal Form (1 N.F): A relation is said to be in 1 NF is and only if all

unaligned domains contain values only. That is the fields of an n-set should

have no group items and no repeating groups.

2.​ 2 nd Normal Form (2 N.F) : A relation is said to be in 2 NF is and only if it is

in 1 NF and every non key attribute is fully dependent on primary key. This

normal takes care of functional dependencies on non-key attributes.

3.​ 3 rd Normal Form (3 N.F) : A relation is said to be in 3 NF is and only if it is

in 2 NF and every non key attribute is non transitively dependent on the

primary key. This normal form avoids the transitive dependencies on the

primary key.

4.​ Boyce code Normal Form (BCNF) : This is a stronger definition than that of

NF. A relation is said to be in BCNF if and only if every determinant is a

Candidate key.

5. 4 th Normal Form (4 NF) : A relation is said to be in 4 NF if and only if

whenever there exists a multi valued dependency in a relation say A->->B

then all of the relation are also functionally dependent on A(i.e. A->X for all

attributes x of the relation.).

6. 5 th Normal Form (5 NF) OR Projection Join Normal Form (PJNF): A

relation R is in 5 NF .if and only if every join dependency in R is implied by

the candidate key on R . A relation can’t be non-loss split into two tables but

can be split into three tables. This is called Join Dependency.

1.3​ Middleware Technology

 Activex Data Objects.Net Overview

ADO.NET is an evolution of the ADO data access model that directly

addresses user requirements for developing scalable applications. It was designed

specifically for the web with scalability, statelessness, and XML in mind.

​ ADO.NET uses some ADO objects, such as the Connection and

Command objects, and also introduces new objects. Key new ADO.NET objects

include the Dataset, Data Reader, and Data Adapter.

 The important distinction between this evolved stage of ADO.NET and

previous data architectures is that there exists an object -- the Dataset -- that is

separate and distinct from any data stores. Because of that, the Dataset functions as a

standalone entity. You can think of the Dataset as an always disconnected record set

that knows nothing about the source or destination of the data it contains. Inside a

Dataset, much like in a database, there are tables, columns, relationships, constraints,

views, and so forth.

A Data Adapter is the object that connects to the database to fill the Dataset.

Then, it connects back to the database to update the data there, based on operations

performed while the Dataset held the data. In the past, data processing has been

primarily connection-based. Now, in an effort to make multi-tiered apps more

efficient, data processing is turning to a message-based approach that revolves around

chunks of information. At the center of this approach is the Data Adapter, which

provides a bridge to retrieve and save data between a Dataset and its source data

store. It accomplishes this by means of requests to the appropriate SQL commands

made against the data store.

The XML-based Dataset object provides a consistent programming model that

works with all models of data storage: flat, relational, and hierarchical. It does this by

having no 'knowledge' of the source of its data, and by representing the data that it

holds as collections and data types. No matter what the source of the data within the

Dataset is, it is manipulated through the same set of standard APIs exposed through

the Dataset and its subordinate objects.

While the Dataset has no knowledge of the source of its data, the managed

provider has detailed and specific information. The role of the managed provider is to

connect, fill, and persist the Dataset to and from data stores. The OLE DB and SQL

Server .NET Data Providers (System.Data.OleDb and System.Data.SqlClient) that are

part of the .Net Framework provide four basic objects: the Command, Connection,

Data Reader and Data Adapter. In the remaining sections of this document, we'll walk

through each part of the Dataset and the OLE DB/SQL Server .NET Data Providers

explaining what they are, and how to program against them. The following sections

will introduce you to some objects that have evolved, and some that are new. These

objects are:

●​ Connections. For connection to and managing transactions against a database.

●​ Commands. For issuing SQL commands against a database.

●​ Data Readers. For reading a forward-only stream of data records from a SQL

Server data source.

●​ Datasets. For storing, removing and programming against flat data, XML data

and relational data.

●​ Data Adapters. For pushing data into a Dataset, and reconciling data against a

database.

 When dealing with connections to a database, there are two different options: SQL

Server .NET Data Provider (System.Data.SqlClient) and OLE DB .NET Data

Provider (System.Data.OleDb). In these samples we will use the SQL Server .NET

Data Provider. These are written to talk directly to Microsoft SQL Server. The OLE

DB .NET Data Provider is used to talk to any OLE DB provider (as it uses OLE DB

underneath).

Connections

Connections are used to 'talk to' databases, and are represented by

provider-specific classes such as SQLConnection. Commands travel over connections

and result sets are returned in the form of streams which can be read by a Data Reader

object, or pushed into a Dataset object.

Commands

Commands contain the information that is submitted to a database, and are

represented by provider-specific classes such as SQLCommand. A command can be a

stored procedure call, an UPDATE statement, or a statement that returns results. You

can also use input and output parameters, and return values as part of your command

syntax. The example below shows how to issue an INSERT statement against the

North wind database.

Data Readers

The Data Reader object is somewhat synonymous with a

read-only/forward-only cursor over data. The Data Reader API supports flat as well

as hierarchical data. A Data Reader object is returned after executing a command

against a database. The format of the returned Data Reader object is different from a

record set. For example, you might use the Data Reader to show the results of a

search list in a web page.

Datasets

The Dataset object is similar to the ADO Record set object, but more powerful, and

with one other important distinction: the Dataset is always disconnected. The Dataset

object represents a cache of data, with database-like structures such as tables,

columns, relationships, and constraints. However, though a Dataset can and does

behave much like a database, it is important to remember that Dataset objects do not

interact directly with databases, or other source data. This allows the developer to

work with a programming model that is always consistent, regardless of where the

source data resides. Data coming from a database, an XML file, from code, or user

input can all be placed into Dataset objects. Then, as changes are made to the Dataset

they can be tracked and verified before updating the source data. The Get Changes

method of the Dataset object actually creates a second Dataset that contains only the

changes to the data. This Dataset is then used by a Data Adapter (or other objects) to

update the original data source. The Dataset has many XML characteristics, including

the ability to produce and consume XML data and XML schemas. XML schemas can

be used to describe schemas interchanged via Web Services. In fact, a Dataset with a

schema can actually be compiled for type safety and statement completion.

Data Adapters (OLEDB/SQL)

The Data Adapter object works as a bridge between the Dataset and the source data.

Using the provider-specific SqlDataAdapter (along with its associated SqlCommand

and SqlConnection) can increase overall performance when working with a Microsoft

SQL Server databases. For other OLE DB-supported databases, you would use the

OleDbDataAdapter object and its associated OleDbCommand and OleDbConnection

objects. The Data Adapter object uses commands to update the data source after

changes have been made to the Dataset. Using the Fill method of the Data Adapter

calls the SELECT command; using the Update method calls the INSERT, UPDATE

or DELETE command for each changed row. You can explicitly set these commands

in order to control the statements used at runtime to resolve changes, including the

use of stored procedures. For ad-hoc scenarios, a Command Builder object can

generate these at run-time based upon a select statement. However, this run-time

generation requires an extra round-trip to the server in order to gather required

metadata, so explicitly providing the INSERT, UPDATE, and DELETE commands at

design time will result in better run-time performance.

1.​ ADO.NET is the next evolution of ADO for the .Net Framework.

2.​ ADO.NET was created with n-Tier, statelessness and XML in the forefront.

Two new objects, the Dataset and Data Adapter, are provided for these

scenarios. ADO.NET can be used to get data from a stream, or to store data in

a cache for updates.

3.​ There is a lot more information about ADO.NET in the documentation.

4.​ Remember, you can execute a command directly against the database in order

to do inserts, updates, and deletes. You don't need to first put data into a

Dataset in order to insert, update, or delete it.

5.​ Also, you can use a Dataset to bind to the data, move through the data, and

navigate data relationships

Functions

Functions are bet declared between the <Head> tag of HTML page. Functions are called

by user-initiated events. Seems reasonable to keep the functions between the <Head>

tags. They are loaded first before a user can do anything that might call a function.

Scripts can be placed between inside comment fields to ensure that older browser do not

display the script itself.

<html>

<head>

<script language=”JavaScript”>

 function pushbutton (){

​ alert (“Hello!”);

}

</script>

</head>

<body>

<form>

<input type=”button” name=”Button1” value=”push me” onclick=”pushbutton ()”>

</form>

</body>

</html>

 If we want to test this one immediately and you are using a Java Script enabled

browser then please go ahead and push the button.

 This script will create a button and when you press it a window will pop up saying

“hello!”. In fact we have a lot of possibilities just by adding functions to our scripts.

 The common browsers transmit the form information by either method: here’s the

complete tag including the GET transmission method attribute for the previous form

 Example

<Form method =GET action=http://www.mycompany.com/cgi-bin/upfdate.pl>

………

</form>

Input elements:

 Use the <input> tag to define any one of a number of common form elements including

text fields multiple choice lists click able images and submission buttons. There are

many attributers for this tag only that types and name attributes are required for each

element, each type of input element uses only a subset of the followed attributes.

Additional <input> attributes may be required based upon which type of the form

element you specify.

Submit button:

The submit button (<input type=submit>) does what its name implies, settings in motion

the form’s submission to the server from the browser. We many have more than submit

buttons will be added to the parameter list the browser sends along to the server.

Example

< Input type =”submit”>

<Input type=”submit” value=”submit” name=”name”>

Reset button:

 The reset button if firm <input> button is nearly self- explanatory; it lets the user reset

erase or set to some default value all elements in the form. By default the browser

displays a reset button worth the label “reset”. We can change that by specifying a value

attribute with tour own button label.

DATABASE MODELS

ADO.NET and accessing the database through applets and ADO.NET API via an

intermediate server resulted server resulted in a new type of database model which is

different from the client-server model. Based on number of intermediate server through

the request should go it is named as single tire, two tire and multi tire architecture

Single Tier

In a single tier the server and client are the same in the sense that a client program

that needs information (client) and the source of this type of architecture is also possible

in java, in case flat files are used to store the data. However this is useful only in case of

small applications. The advantage with this is the simplicity and portability of the

application developed.

 Database

Two Tier (client-server)

 In two tier architecture the database resides in one machine and client in different

machine they are connected through the network. In this type of architecture a database

management takes control of the database and provides access to clients in a network.

This software bundle is also called as the server. Software in different machines,

requesting for information are called as the clients.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

​ ​ Database

Three Tier and N-Tier

 ​ In the three-tier architecture, any number servers can access the database that

resides on server. Which in turn serve clients in a network. For example, you want to

access the database using java applets, the applet running in some other machine, can

send request only to the server from which it is down loaded. For this reason we will need

to have a intermediate server which will accept the requests from applets and them to the

actual database server. This intermediate server acts as a two-way communication

channel also. This is the information or data from the database is passed on to the applet

that is requesting it. This can be extended to make n tiers of servers, each server carrying

to specific type of request from clients, however in practice only 3 tiers architecture is

popular.

C# Language

C# (pronounced C Sharp) is a multi-paradigm programming language that encompasses

functional, imperative, generic, object-oriented (class-based), and component-oriented

programming disciplines. It was developed by Microsoft as part of the .NET initiative

http://en.wikipedia.org/wiki/Multi-paradigm_programming_language
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Microsoft_.NET

and later approved as a standard by ECMA (ECMA-334) and ISO (ISO/IEC 23270). C#

is one of the 44 programming languages supported by the .NET Framework's Common

Language Runtime.

C# is intended to be a simple, modern, general-purpose, object-oriented programming

language. Anders Hejlsberg, the designer of Delphi, leads the team which is developing

C#. It has an object-oriented syntax based on C++ and is heavily influenced by other

programming languages such as Delphi and Java. It was initially named Cool, which

stood for "C like Object Oriented Language". However, in July 2000, when Microsoft

made the project public, the name of the programming language was given as C#. The

most recent version of the language is C# 3.0 which was released in conjunction with the

.NET Framework 3.5 in 2007. The next proposed version, C# 4.0, is in development.

History:-

In 1996, Sun Microsystems released the Java programming language with Microsoft soon

purchasing a license to implement it in their operating system. Java was originally meant

to be a platform independent language, but Microsoft, in their implementation, broke

their license agreement and made a few changes that would essentially inhibit Java's

platform-independent capabilities. Sun filed a lawsuit and Microsoft settled, deciding to

create their own version of a partially compiled, partially interpreted object-oriented

programming language with syntax closely related to that of C++.

During the development of .NET, the class libraries were originally written in a

language/compiler called Simple Managed C (SMC). In January 1999, Anders Hejlsberg

formed a team to build a new language at the time called Cool, which stood for "C like

Object Oriented Language".Microsoft had considered keeping the name "Cool" as the

final name of the language, but chose not to do so for trademark reasons. By the time the

.NET project was publicly announced at the July 2000 Professional Developers

Conference, the language had been renamed C#, and the class libraries and ASP.NET

runtime had been ported to C#.

http://en.wikipedia.org/wiki/Ecma_International
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Anders_Hejlsberg
http://en.wikipedia.org/wiki/Delphi_programming_language
http://en.wikipedia.org/wiki/Syntax
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Delphi_programming_language
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Base_Class_Library
http://en.wikipedia.org/wiki/ASP.NET

C#'s principal designer and lead architect at Microsoft is Anders Hejlsberg, who was

previously involved with the design of Visual J++, Borland Delphi, and Turbo Pascal. In

interviews and technical papers he has stated that flaws in most major programming

languages (e.g. C++, Java, Delphi, and Smalltalk) drove the fundamentals of the

Common Language Runtime (CLR), which, in turn, drove the design of the C#

programming language itself. Some argue that C# shares roots in other languages.

Features of C#:-

By design, C# is the programming language that most directly reflects the underlying

Common Language Infrastructure (CLI). Most of C#'s intrinsic types correspond to

value-types implemented by the CLI framework. However, the C# language specification

does not state the code generation requirements of the compiler: that is, it does not state

that a C# compiler must target a Common Language Runtime (CLR), or generate

Common Intermediate Language (CIL), or generate any other specific format.

Theoretically, a C# compiler could generate machine code like traditional compilers of

C++ or FORTRAN; in practice, all existing C# implementations target CIL.

Some notable C# distinguishing features are:

●​ There are no global variables or functions. All methods and members must be

declared within classes. It is possible, however, to use static methods/variables

within public classes instead of global variables/functions.

●​ Local variables cannot shadow variables of the enclosing block, unlike C and

C++. Variable shadowing is often considered confusing by C++ texts.

●​ C# supports a strict Boolean data type, bool. Statements that take conditions, such

as while and if, require an expression of a boolean type. While C++ also has a

boolean type, it can be freely converted to and from integers, and expressions

such as if(a) require only that a is convertible to bool, allowing a to be an int, or a

pointer. C# disallows this "integer meaning true or false" approach on the grounds

http://en.wikipedia.org/wiki/Anders_Hejlsberg
http://en.wikipedia.org/wiki/Visual_J%2B%2B
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Delphi_programming_language
http://en.wikipedia.org/wiki/Smalltalk

that forcing programmers to use expressions that return exactly bool can prevent

certain types of programming mistakes such as if (a = b) (use of = instead of ==).

●​ In C#, memory address pointers can only be used within blocks specifically

marked as unsafe, and programs with unsafe code need appropriate permissions to

run. Most object access is done through safe object references, which are always

either pointing to a valid, existing object, or have the well-defined null value; a

reference to a garbage-collected object, or to random block of memory, is

impossible to obtain. An unsafe pointer can point to an instance of a value-type,

array, string, or a block of memory allocated on a stack. Code that is not marked

as unsafe can still store and manipulate pointers through the System.IntPtr type, but

cannot dereference them.

●​ Managed memory cannot be explicitly freed, but is automatically garbage

collected. Garbage collection addresses memory leaks. C# also provides direct

support for deterministic finalization with the using statement (supporting the

Resource Acquisition Is Initialization idiom).

●​ Multiple inheritance is not supported, although a class can implement any number

of interfaces. This was a design decision by the language's lead architect to avoid

complication, avoid dependency hell and simplify architectural requirements

throughout CLI.

●​ C# is more type safe than C++. The only implicit conversions by default are those

which are considered safe, such as widening of integers and conversion from a

derived type to a base type. This is enforced at compile-time, during JIT, and, in

some cases, at runtime. There are no implicit conversions between booleans and

integers, nor between enumeration members and integers (except for literal 0,

which can be implicitly converted to any enumerated type). Any user-defined

conversion must be explicitly marked as explicit or implicit, unlike C++ copy

constructors (which are implicit by default) and conversion operators (which are

always implicit).

●​ Enumeration members are placed in their own scope.

●​ C# provides syntactic sugar for a common pattern of a pair of methods, accessor

(getter) and mutator (setter) encapsulating operations on a single attribute of a

class, in form of properties.

●​ Full type reflection and discovery is available.

●​ C# currently (as of 3 June 2008) has 77 reserved words.

Common Type system (CTS)

C# has a unified type system. This unified type system is called Common Type System

(CTS).

A unified type system implies that all types, including primitives such as integers, are

subclasses of the System.Object class. For example, every type inherits a ToString() method.

For performance reasons, primitive types (and value types in general) are internally

allocated on the stack.

Categories of datatypes

CTS separates datatypes into two categories:

●​ Value types

●​ Reference types

Value types are plain aggregations of data. Instances of value types do not have

referential identity nor a referential comparison semantics - equality and inequality

comparisons for value types compare the actual data values within the instances, unless

the corresponding operators are overloaded. Value types are derived from

System.ValueType, always have a default value, and can always be created and copied.

Some other limitations on value types are that they cannot derive from each other (but

can implement interfaces) and cannot have a default (parameterless) constructor.

Examples of value types are some primitive types, such as int (a signed 32-bit integer),

float (a 32-bit IEEE floating-point number), char (a 16-bit Unicode codepoint), and

System.DateTime (identifies a specific point in time with millisecond precision).

In contrast, reference types have the notion of referential identity - each instance of

reference type is inherently distinct from every other instance, even if the data within

both instances is the same. This is reflected in default equality and inequality

comparisons for reference types, which test for referential rather than structural equality,

unless the corresponding operators are overloaded (such as the case for System.String). In

general, it is not always possible to create an instance of a reference type, nor to copy an

existing instance, or perform a value comparison on two existing instances, though

specific reference types can provide such services by exposing a public constructor or

implementing a corresponding interface (such as ICloneable or IComparable). Examples of

reference types are object (the ultimate base class for all other C# classes), System.String (a

string of Unicode characters), and System.Array (a base class for all C# arrays).

Both type categories are extensible with user-defined types.

Boxing and unboxing

Boxing is the operation of converting a value of a value type into a value of a

corresponding reference type.

Example:

int foo = 42; // Value type...

object bar = foo; // foo is boxed to bar.

Unboxing is the operation of converting a value of a reference type (previously boxed)

into a value of a value type.

Example:

int foo = 42; // Value type.

object bar = foo; // foo is boxed to bar.

int foo2 = (int)bar; // Unboxed back to value type.

Features of C# 2.0

New features in C# for the .NET SDK 2.0 (corresponding to the 3rd edition of the

ECMA-334 standard) are:

Partial class

Partial classes allow implementation of a class to be spread between several files, with

each file containing one or more class members. It is primary useful when parts of a class

are automatically generated. For example, the feature is heavily used by code-generating

user interface designers in Visual Studio.

file1.cs:

public partial class MyClass
{
 public void MyMethod1()
 {
 // Manually written code
 }
}

file2.cs:

public partial class MyClass
{
 public void MyMethod2()
 {
 // Automatically generated code
 }
}

Generics

Generics, or parameterized types, or parametric polymorphism is a .NET 2.0 feature

supported by C#. Unlike C++ templates, .NET parameterized types are instantiated at

runtime rather than by the compiler; hence they can be cross-language whereas C++

templates cannot. They support some features not supported directly by C++ templates

such as type constraints on generic parameters by use of interfaces. On the other hand, C#

does not support non-type generic parameters. Unlike generics in Java, .NET generics use

reification to make parameterized types first-class objects in the CLI Virtual Machine,

which allows for optimizations and preservation of the type information.

Static classes

Static classes are classes that cannot be instantiated or inherited from, and that only allow

static members. Their purpose is similar to that of modules in many procedural

languages.

A new form of iterator providing generator functionality

A new form of iterator that provides generator functionality, using a yield return construct

similar to yield in Python.

// Method that takes an iterable input (possibly an array)

// and returns all even numbers.

public static IEnumerable<int> GetEven(IEnumerable<int> numbers)

{

 foreach (int i in numbers)

 {

 if (i % 2 == 0) yield return i;

 }

}

Anonymous delegates

Anonymous delegates provide closure functionality in C#. Code inside the body of an

anonymous delegate has full read/write access to local variables, method parameters, and

class members in scope of the delegate, excepting out and ref parameters. For example:-

int SumOfArrayElements(int[] array)

{

 int sum = 0;

 Array.ForEach(

 array,

 delegate(int x)

 {

 sum += x;

 }

);

 return sum;

}

Delegate covariance and contravariance

Conversions from method groups to delegate types are covariant and contra variant in

return and parameter types, respectively.

The accessibility of property accessors can be set independently

Example:

string status = string.Empty;

public string Status

{

 get { return status; } // anyone can get value of this property,

 protected set { status = value; } // but only derived classes can change it

}

Nullable types

Nullable value types (denoted by a question mark, e.g. int? i = null;) which add null to the

set of allowed values for any value type. This provides improved interaction with SQL

databases, which can have nullable columns of types corresponding to C# primitive

types: an SQL INTEGER NULL column type directly translates to the C# int?.

Nullable types received an eleventh-hour improvement at the end of August 2005, mere

weeks before the official launch, to improve their boxing characteristics: a nullable

variable which is assigned null is not actually a null reference, but rather an instance of

struct Nullable<T> with property HasValue equal to false. When boxed, the Nullable instance

itself is boxed, and not the value stored in it, so the resulting reference would always be

non-null, even for null values. The following code illustrates the corrected flaw:

int? i = null;

object o = i;

if (o == null)

 Console.WriteLine ("Correct behavior - runtime version from September 2005 or later");

else

 Console.WriteLine ("Incorrect behavior - pre-release runtime (from before September 2005)");

When copied into objects, the official release boxes values from Null able instances, so

null values and null references are considered equal. The late nature of this fix caused

some controversy, since it required core-CLR changes affecting not only .NET2, but all

dependent technologies (including C#, VB, SQL Server 2005 and Visual Studio 2005).

ABOUT INTERNET AND INTRANET

 Technologically, the Internet is network of computers. Not just a few special Computers,

but over nine million of all kinds of computers. Similarly it is not just a network, but a

network of networks hence the name and using TCP/IP (transmission control protocol

and internet protocol).

 Internet is the name for a vast, worldwide system consisting of people,

information and computers. Internet is global communication system of diverse, INTER

connected computer NETWORK for the exchange of information of virtually every

conceivable topic known to man.

 Internet is not just one thing. It is a lot of things to lot of people. In today’s

world it is one of the most important commodity of life. The Internet is more important in

what it enables than what it is, more of a phenomenon than fact.

INTRANET

 The classical definition of Intranet is the application of the Internet technologies to the

internal business applications media most refer to the Intranet in terms of applying web

technologies to information systems in the organization.

DATABASE TABLES:

1.) insertbook

BOOKID INT,

TITLE VARCHAR(150),

AUTHOR VARCHAR(100),

YEARPUBLISHED VARCHAR(20),

CATEGORY VARCHAR(100),

PUBLISHER VARCHAR(100),

EDITION VARCHAR(50),

COST VARCHAR(20),

DATEOFENTRY DATETIME,

LIBRARYCOPY INT,

STATUS VARCHAR(20),

CONDITION VARCHAR(20)

2.) librarybooks

BOOKID INT NULL,

TITLE VARCHAR(150) NULL,

AUTHOR VARCHAR(100) NULL,

YEARPUBLISHED VARCHAR(20) NULL,

CATEGORY VARCHAR(100) NULL,

PUBLISHER VARCHAR(100) NULL,

EDITION VARCHAR(50) NULL,

COST VARCHAR(20) NULL,

DATEOFENTRY DATETIME NULL,

LIBRARYCOPY INT NULL,

STATUS VARCHAR(20) NULL,

CONDITION VARCHAR(20) NULL

3.) issuebook

TRNSID INT NULL,

ROLLNUMBER INT NULL,

NAME VARCHAR(150) NULL,

AGE INT NULL,

GENDER VARCHAR(10) NULL,

BRANCH VARCHAR(10) NULL,

YEAR INT NULL,

BARTYPE VARCHAR(15) NULL,

BOOKID INT NULL,

TITLE VARCHAR(150) NULL,

AUTHOR VARCHAR(150) NULL,

CATEGORY VARCHAR(100) NULL,

EDITION VARCHAR(20) NULL,

PUBLISHER VARCHAR(50) NULL,

LIBRARYCOPY INT NULL,

ISSUEDATE DATETIME NULL,

DUEBACKBY DATETIME NULL

FEASIBILITY STUDY:

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Feasibility

study is conducted once the problem is clearly understood. Feasibility study is a high

level capsule version of the entire system analysis and design process. The objective is to

determine quickly at a minimum expense how to solve a problem. The purpose of

feasibility is not to solve the problem but to determine if the problem is worth solving.

 The system has been tested for feasibility in the following points.

​ 1. Technical Feasibility

​ 2. Economical Feasibility

​ 3. Operational Feasibility.

1. Technical Feasibility

 The project entitles "Courier Service System” is technically feasibility

because of the below mentioned feature. The project was developed in Java which

Graphical User Interface.

 It provides the high level of reliability, availability and compatibility. All

these make Java an appropriate language for this project. Thus the existing

software Java is a powerful language.

2. Economical Feasibility

 The computerized system will help in automate the selection leading

the profits and details of the organization. With this software, the machine and

manpower utilization are expected to go up by 80-90% approximately. The costs

incurred of not creating the system are set to be great, because precious time can be

wanted by manually.

3. Operational Feasibility

​ ​ ​ ​ In this project, the management will know the details

of each project where he may be presented and the data will be maintained as

decentralized and if any inquires for that particular contract can be known as per their

requirements and necessaries.

Implementation:

 Implementation is the stage where the theoretical design is turned into a working

system. The most crucial stage in achieving a new successful system and in giving

confidence on the new system for the users that it will work efficiently and effectively.

The system can be implemented only after thorough testing is done and if it is found to

work according to the specification.

It involves careful planning, investigation of the current system and its constraints on

implementation, design of methods to achieve the change over and an evaluation of

change over methods a part from planning. Two major tasks of preparing the

implementation are education and training of the users and testing of the system.

 The more complex the system being implemented, the more involved will be the

systems analysis and design effort required just for implementation.

 The implementation phase comprises of several activities. The required hardware

and software acquisition is carried out. The system may require some software to be

developed. For this, programs are written and tested. The user then changes over to his

new fully tested system and the old system is discontinued.

TESTING:

 The testing phase is an important part of software development. It is the puterized

system will help in automate process of finding errors and missing operations and also a

complete verification to determine whether the objectives are met and the user

requirements are satisfied.

Software testing is carried out in three steps:

 1. The first includes unit testing, where in each module is tested to provide its

correctness, validity and also determine any missing operations and to verify whether the

objectives have been met. Errors are noted down and corrected immediately. Unit testing

is the important and major part of the project. So errors are rectified easily in particular

module and program clarity is increased. In this project entire system is divided into

several modules and is developed individually. So unit testing is conducted to individual

modules.

 2. The second step includes Integration testing. It need not be the case, the

software whose modules when run individually and showing perfect results, will also

show perfect results when run as a whole. The individual modules are clipped under this

major module and tested again and verified the results. This is due to poor interfacing,

which may results in data being lost across an interface. A module can have inadvertent,

adverse effect on any other or on the global data structures, causing serious problems.

 3. The final step involves validation and testing which determines which the

software functions as the user expected. Here also some modifications were. In the

completion of the project it is satisfied fully by the end user.

 Maintenance and environment:

AS the number of computer based systems, grieve libraries of computer software began

to expand. In house developed projects produced tones of thousand soft program source

statements. Software products purchased from the outside added hundreds of thousands

of new statements. A dark cloud appeared on the horizon. All of these programs, all of

those source statements-had to be corrected when false were detected, modified as user

requirements changed, or adapted to new hardware that was purchased. These activities

were collectively called software Maintenance.

 The maintenance phase focuses on change that is associated with error correction,

adaptations required as the software's environment evolves, and changes due to

enhancements brought about by changing customer requirements. Four types of changes

are encountered during the maintenance phase.

Correction

Adaptation

Enhancement

Prevention

Correction:

 Even with the best quality assurance activities is lightly that the customer

will uncover defects in the software. Corrective maintenance changes the software

to correct defects.

 Maintenance is a set of software Engineering activities that occur after

software has been delivered to the customer and put into operation. Software

configuration management is a set of tracking and control activities that began

when a software project begins and terminates only when the software is taken

out of the operation.

 We may define maintenance by describing four activities that are undertaken

after a program is released for use:

Corrective Maintenance

Adaptive Maintenance

Perfective Maintenance or Enhancement

Preventive Maintenance or reengineering

Only about 20 percent of all maintenance work are spent "fixing mistakes". The

remaining 80 percent are spent adapting existing systems to changes in their

external environment, making enhancements requested by users, and

reengineering an application for use.

 ADAPTATION:

 Over time, the original environment (E>G., CPU, operating system, business

rules, external product characteristics) for which the software was developed is likely to

change. Adaptive maintenance results in modification to the software to accommodate

change to its external environment.

ENHANCEMENT:

 As software is used, the customer/user will recognize additional functions that will

provide benefit. Perceptive maintenance extends the software beyond its original function

requirements.

PREVENTION:

 Computer software deteriorates due to change, and because of this,

preventive maintenance, often called software re engineering, must be conducted

to enable the software to serve the needs of its end users. In essence, preventive

maintenance makes changes to computer programs so that they can be more easily

corrected, adapted, and enhanced. Software configuration management (SCM) is

an umbrella activity that is applied throughout the software process. SCM

activities are developed to

 Database Models:

 JDBC and accessing the database through applets, and JDBC API via an

intermediate server resulted in a new type of database model which is different from the

client-server model. Based on number of intermediate servers through which request

should go it si named as single tier, two tier and multi tier architecture.

Single Tier:

 In a single tier the server and client are the same in the sense that a client program

that needs information (client) and the source of this type of architecture is also possible

in Java, in case flat filters are used to store the data. However this is useful only in case of

small applications. The advantage with this is the simplicity and portability of the

application developed.

 Two Tier (Client-Server):

 In a two tier architecture the database resides in one machine(server) and the

data can be accessed by any number of machines(clients) in the net work. In this type of

architecture a database manager takes control of the database and provides access to

clients in a network. This software bundle is also called as the server. Software in

different machines, requesting for information are called as clients.

 Three tier and N-tier:

​ ​ The three tier architecture, the database that resides one server, can be

accessed by any number of servers, which In turn serve clients in a network .for

example, you want to access the database using java applets, the applet running in some

other machine, can send requests only to the server from which it is down loaded. For this

reason we will need to have a intermediate server acts as a two way communication

channel also This is, the information or data from the database is passed on to the applet

that is recession it. This can extended to make n tiers of servers, each server carryingtype

of request from clients, however in practice only three tier architecture is more popular.

INTRODUCTION TO HTML4.0

What is the World Wide Web?

 The World Wide Web is a network of information resources. The Web

relies on three mechanisms to make these resources readily available to the widest

possible audience.

1.​ A uniform naming scheme for locating resources on the Web (e.g. URLs)

2.​ Protocols, for access to named resources over the Web (e.g. HTTP)

3.​ Hypertext, for easy navigation among resources (e.g.HTML)

The ties between the three mechanisms are apparent throughout this specification.

What is HTML?

 To publish information for global distribution, one needs a universally

understood language, a kind of publishing mother tongue that all computers may

potentially understand. The publishing language used by the World Wide Web is HTML

(from Hyper Text Markup Language). HTML gives authors the means to

-​ Publish online documents with headings, text, tables, lists, photos, etc.

-​ Retrieve online information via hypertext links, at the click of a button

-​ Design forms for conducting transactions with remote services, for use in searching for

information, making reservations, ordering products etc.

-​ Include spread - sheets, video clips, sound clips, and other applications directly in their

documents.

A brief history of HTML:

 HTML was originally developed by Tim Berners-Lee while at CERN, and

popularized by the Mosaic browser developed at NCSA. During the course of the 1990s

it has blossomed with the explosive growth of the Web during this time. HTML has been

extended in a number of ways. The Web depends on Web page authors and vendors

sharing the same conventions for HTML. This has motivated joint work on

specifications for HTML.

HTML 2.0 (November 1995) was developed under the aegis of the Internet Engineering

Task Force (IETF) to codify common practice in late 1994. HTML (1993) and

([HTML.30]) (1995) proposed much richer versions of HTML, despite never receiving

consensus in standards discussions, these drafts led to the adoption of a range new

features. The efforts of the World Wide Web Consortium’s HTML working group to

codify common in 1996 resulted in HTML 3.2 (January 1997). Most people agree that

HTML documents should work well across different browsers and platforms. Achieving

interoperability lowers costs to content providers since they must develop only one

version of a document. If the effort is not made, there is much greater risk that the Web

will devolve into a proprietary world of incompatible formats, ultimately reducing the

Web’s commercial potential for all participants.

SOFTWARE METHODOLOGY

 The software methodology followed in this project includes the object-oriented

methodology and the application system development methodologies. The description of

these methodologies is given below.

 Application System Development – A Life cycle Approach

 Although there are a growing number of applications (such as decision support

systems) that should be developed using an experimental process strategy such as

prototyping, a significant amount of new development work continue to involve major

operational applications of broad scope. The application systems are large highly

structured. User task comprehension and developer task proficiency is usually high.

These factors suggest a linear or iterative assurance strategy. The most common method

for this stage class of problems is a system development life cycle modal in which each

stage of development is well defined and has straightforward requirements for

deliverables, feedback and sign off. The system development life cycle is described in

detail since it continues to be an appropriate methodology for a significant part of new

development work.

 The basic idea of the system development life cycle is that there is a well-defined

process by which an application is conceived and developed and implemented. The life

cycle gives structure to a creative process. In order to manage and control the

development effort, it is necessary to know what should have been done, what has been

done, and what has yet to be accomplished. The phrases in the system development life

cycle provide a basis for management and control because they define segments of the

flow of work, which can be identified for managerial purposes and specifies the

documents or other deliverables to be produced in each phase.

 The phases in the life cycle for information system development are described

differently by different writers, but the differences are primarily in the amount of

necessity and manner of categorization. There is a general agreement on the flow of

development steps and the necessity for control procedures at each stage.

The information system development cycle for an application consists of three major

stages.

1)​ Definition.

2)​ Development.

3)​ Installation and operation.

The first stage of the process, which defines the information requirements for a feasible

cost effective system. The requirements are then translated into a physical system of

forms, procedures, programs etc., by the system design, computer programming and

procedure development. The resulting system is test and put into operation. No system is

perfect so there is always a need for maintenance changes. To complete the cycle, there

should be a post audit of the system to evaluate how well it performs and how well it

meets the cost and performance specifications. The stages of definition, development and

installation and operation can therefore be divided into smaller steps or phrases as

follows.

Definition

Proposed definition : preparation of request for proposed applications.

Feasibility assessment : evaluation of feasibility and cost benefit of proposed system.

Information requirement analysis : determination of information needed.

Design

Conceptual design : User-oriented design of application development.

Physical system design : Detailed design of flows and processes in applications

processing system and preparation of program specification.

Development

Program development : coding and testing of computer programs.

Procedure development : design of procedures and preparation of user instructions.

Installation and operation

Conversion : final system test and conversion.

Operation and maintenance : Month to month operation and maintenance

Post audit : Evaluation of development process,application system and

results of use at the completion of the each phase, formal approval sign-off is required

from the users as well as from the manager of the project development.

ASP CODE:-

<%@ Page Language="C#" MasterPageFile="~/masterstudent.master"

AutoEventWireup="true" CodeFile="studentprofile.aspx.cs"

Inherits="Student_studentprofile" Title="Untitled Page" %>

<%@ Register Assembly="System.Web.Extensions, Version=1.0.61025.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

 Namespace="System.Web.UI" TagPrefix="asp" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"

TagPrefix="cc1" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"

Runat="Server">

 <asp:Panel ID="Panel1" runat="server" Height="235px" Style="z-index: 100; left:

2px;

 position: absolute; top: 0px" Width="839px">

 <table style="z-index: 102; left: 19px; position: absolute; top: 2px">

 <tr>

 <td>

 List of Students

 </td>

 </tr>

 </table>

 <asp:GridView ID="GridView1" runat="server" CellPadding="4"

ForeColor="#333333" GridLines="None"

 Style="z-index: 101; left: 19px; position: absolute; top: 39px">

 <FooterStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />

 <RowStyle BackColor="#FFFBD6" ForeColor="#333333" />

 <PagerStyle BackColor="#FFCC66" ForeColor="#333333"

HorizontalAlign="Center" />

 <SelectedRowStyle BackColor="#FFCC66" Font-Bold="True"

ForeColor="Navy" />

 <HeaderStyle BackColor="#990000" Font-Bold="True" ForeColor="White" />

 <AlternatingRowStyle BackColor="White" />

 </asp:GridView>

 </asp:Panel>

 <asp:Panel ID="Panel2" runat="server" Height="191px" Style="z-index: 102; left:

1px;

 position: absolute; top: 236px" Width="848px">

 <table style="z-index: 100; left: 21px; position: absolute; top: 5px">

 <tr>

 <td style="height: 21px">

 Students Details

 </td>

 </tr>

 </table>

 <asp:ScriptManager id="ScriptManager1" runat="server">

 </asp:ScriptManager>

 <cc1:TabContainer ID="TabContainer1" runat="server" ActiveTabIndex="7"

AutoPostBack="True"

 BackColor="#E0E0E0" BorderColor="Black" Style="z-index: 167; left: 0px;

position: absolute;

 top: 27px" Width="811px">

 <cc1:TabPanel ID="TabPanel1" runat="server" HeaderText="TabPanel1">

 <HeaderTemplate>

 Profile

 </HeaderTemplate>

 <ContentTemplate>

 <asp:DetailsView ID="DetailsView1" runat="server" CellPadding="4"

ForeColor="#333333"

 GridLines="None" Height="50px" Style="z-index: 102; left: 142px;

position: absolute;

 top: 119px" Width="125px">

 <AlternatingRowStyle BackColor="White" />

 <CommandRowStyle BackColor="#FFFFC0" Font-Bold="True" />

 <FieldHeaderStyle BackColor="#FFFF99" Font-Bold="True" />

 <FooterStyle BackColor="#990000" Font-Bold="True"

ForeColor="White" />

 <HeaderStyle BackColor="#990000" Font-Bold="True"

ForeColor="White" />

 <PagerStyle BackColor="#FFCC66" ForeColor="#333333"

HorizontalAlign="Center" />

 <RowStyle BackColor="#FFFBD6" ForeColor="#333333" />

 </asp:DetailsView>

 <asp:Image ID="Image1" runat="server" Style="z-index: 101; left: 9px;

position: absolute;

 top: 116px" />

 </ContentTemplate>

 </cc1:TabPanel>

 <cc1:TabPanel ID="TabPanel2" runat="server" HeaderText="TabPanel2">

 <HeaderTemplate>

 Academics

 </HeaderTemplate>

 <ContentTemplate>

 <asp:GridView ID="GridView2" runat="server" CellPadding="4"

ForeColor="#333333" GridLines="None"

 Style="z-index: 100; left: 180px; position: absolute; top: 117px">

 <AlternatingRowStyle BackColor="White" />

 <FooterStyle BackColor="#990000" Font-Bold="True"

ForeColor="White" />

 <HeaderStyle BackColor="#990000" Font-Bold="True"

ForeColor="White" />

 <PagerStyle BackColor="#FFCC66" ForeColor="#333333"

HorizontalAlign="Center" />

 <RowStyle BackColor="#FFFBD6" ForeColor="#333333" />

 <SelectedRowStyle BackColor="#FFCC66" Font-Bold="True"

ForeColor="Navy" />

 </asp:GridView>

 </ContentTemplate>

 </cc1:TabPanel>

 <cc1:TabPanel ID="TabPanel3" runat="server" HeaderText="TabPanel3">

 <HeaderTemplate>

 Medical

 </HeaderTemplate>

 <ContentTemplate>

 </ContentTemplate>

 </cc1:TabPanel>

 <cc1:TabPanel ID="TabPanel4" runat="server" HeaderText="TabPanel4">

 <HeaderTemplate>

 Hostel

 </HeaderTemplate>

 <ContentTemplate>

 </ContentTemplate>

 </cc1:TabPanel>

 <cc1:TabPanel ID="TabPanel5" runat="server" HeaderText="TabPanel5">

 <HeaderTemplate>

 Sublings

 </HeaderTemplate>

 <ContentTemplate>

 </ContentTemplate>

 </cc1:TabPanel>

 <cc1:TabPanel ID="TabPanel6" runat="server" HeaderText="TabPanel6">

 <HeaderTemplate>

 Registration

 </HeaderTemplate>

 <ContentTemplate>

 </ContentTemplate>

 </cc1:TabPanel>

 <cc1:TabPanel ID="TabPanel7" runat="server" HeaderText="TabPanel7">

 <HeaderTemplate>

 Certificates

 </HeaderTemplate>

 <ContentTemplate>

 </ContentTemplate>

 </cc1:TabPanel>

 <cc1:TabPanel ID="TabPanel8" runat="server" HeaderText="TabPanel8">

 <ContentTemplate>

 </ContentTemplate>

 <HeaderTemplate>

 Attendance

 </HeaderTemplate>

 </cc1:TabPanel>

 </cc1:TabContainer>

 </asp:Panel>

</asp:Content>

C# Code:-

using System;

using System.Data;

using System.Configuration;

using System.Collections;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Windows.Forms;

using Library;

using System.Data.SqlClient;

public partial class libbarrowerdetails : System.Web.UI.Page

{

 protected void Button1_Click(object sender, EventArgs e)

 {

 int fbw=Convert.ToInt32(TextBox1.Text);

 balebook ff1=new balebook();

 SqlDataReader dr=ff1.balfindbrro(fbw);

 SqlDataReader dr1 = ff1.balbookcount(fbw);

 if(dr.Read())

 TextBox2.Text = dr[0].ToString();

 TextBox3.Text = dr[1].ToString();

 TextBox4.Text = dr[2].ToString();

 TextBox5.Text = dr[3].ToString();

 TextBox6.Text = dr[4].ToString();

 TextBox7.Text = dr[5].ToString();

 TextBox8.Text = dr[6].ToString();

 TextBox9.Text = dr[7].ToString();

 TextBox10.Text = dr[8].ToString();

 TextBox11.Text = dr[9].ToString();

 TextBox12.Text = dr[10].ToString();

 TextBox13.Text = dr[11].ToString();

 TextBox14.Text = dr[12].ToString();

 TextBox17.Text = dr[13].ToString();

 dr.Close();

 if (dr1.Read())

 {

 TextBox16.Text = dr1[0].ToString();

 }

 dr1.Close();

 int len1 = TextBox1.Text.Length;

 if (len1 == 8)

 {

 TextBox15.Text = "Student";

 }

 else

 {

 TextBox15.Text = "Faculty";

 }

 }

 protected void Button3_Click(object sender, EventArgs e)

 {

 Response.Redirect("librarymain.aspx");

 }

}

 Testing is a process of executing a program with the indent of

finding an error. Testing is a crucial element of software quality assurance and presents

ultimate review of specification, design and coding.

System Testing is an important phase. Testing represents an interesting anomaly for the

software. Thus a series of testing are performed for the proposed system before the

system is ready for user acceptance testing.

A good test case is one that has a high probability of finding an as undiscovered

error. A successful test is one that uncovers an as undiscovered error.

Testing Objectives:

1.​ Testing is a process of executing a program with the intent of finding an error

2.​ A good test case is one that has a probability of finding an as yet undiscovered error

3.​ A successful test is one that uncovers an undiscovered error

Testing Principles:

●​All tests should be traceable to end user requirements

●​Tests should be planned long before testing begins

●​Testing should begin on a small scale and progress towards testing in large

●​Exhaustive testing is not possible

●​To be most effective testing should be conducted by a independent third party

​ The primary objective for test case design is to derive a set of tests that has the

highest livelihood for uncovering defects in software. To accomplish this objective two

different categories of test case design techniques are used. They are

▪​ White box testing.

▪​ Black box testing.

White-box testing:

White box testing focus on the program control structure. Test cases are derived to

ensure that all statements in the program have been executed at least once during testing

and that all logical conditions have been executed.

Block-box testing:

Black box testing is designed to validate functional requirements without regard to the

internal workings of a program. Black box testing mainly focuses on the information

domain of the software, deriving test cases by partitioning input and output in a manner

that provides through test coverage. Incorrect and missing functions, interface errors,

errors in data structures, error in functional logic are the errors falling in this category.

Testing strategies:

A strategy for software testing must accommodate low-level tests that are

necessary to verify that all small source code segment has been correctly implemented as

well as high-level tests that validate major system functions against customer

requirements.

Testing fundamentals:

Testing is a process of executing program with the intent of finding error. A good

test case is one that has high probability of finding an undiscovered error. If testing is

conducted successfully it uncovers the errors in the software. Testing cannot show the

absence of defects, it can only show that software defects present.

Testing Information flow:

Information flow for testing flows the pattern. Two class of input provided to test

the process. The software configuration includes a software requirements specification, a

design specification and source code.

Test configuration includes test plan and test cases and test tools. Tests are

conducted and all the results are evaluated. That is test results are compared with

expected results. When erroneous data are uncovered, an error is implied and debugging

commences.

Unit testing:

Unit testing is essential for the verification of the code produced during the

coding phase and hence the goal is to test the internal logic of the modules. Using the

detailed design description as a guide, important paths are tested to uncover errors with in

the boundary of the modules. These tests were carried out during the programming stage

itself. All units of ViennaSQL were successfully tested.

Integration testing :

Integration testing focuses on unit tested modules and build the program structure

that is dictated by the design phase.

System testing:

System testing tests the integration of each module in the system. It also tests to

find discrepancies between the system and it’s original objective, current specification

and system documentation. The primary concern is the compatibility of individual

modules. Entire system is working properly or not will be tested here, and specified path

ODBC connection will correct or not, and giving output or not are tested here these

verifications and validations are done by giving input values to the system and by

comparing with expected output. Top-down testing implementing here.

Acceptance Testing:

This testing is done to verify the readiness of the system for the implementation.

Acceptance testing begins when the system is complete. Its purpose is to provide the end

user with the confidence that the system is ready for use. It involves planning and

execution of functional tests, performance tests and stress tests in order to demonstrate

that the implemented system satisfies its requirements.

Tools to special importance during acceptance testing include:

Test coverage Analyzer – records the control paths followed for each test case.

Timing Analyzer – also called a profiler, reports the time spent in various regions of the

code are areas to concentrate on to improve system performance.

Coding standards – static analyzers and standard checkers are used to inspect code for

deviations from standards and guidelines.

Test Cases:

Test cases are derived to ensure that all statements in the program have been

executed at least once during testing and that all logical conditions have been executed.

Using White-Box testing methods, the software engineer can drive test cases that

●​ Guarantee that logical decisions on their true and false sides.

●​ Exercise all logical decisions on their true and false sides.

●​ Execute all loops at their boundaries and with in their operational bounds.

●​ Exercise internal data structure to assure their validity.

The test case specification for system testing has to be submitted for review before

system testing commences.

​

 ​ ​ ​

Home Page

Library Home

Book Search

Issue of Book

Return Book

New Book Details

Barrower Details

Loan Details

Book Details

Student Home Page

CONCLUSION:

The package was designed in such a way that future modifications can be

done easily. The following conclusions can be deduced from the

development of the project.

�​ Library Management System of the entire system improves the efficiency.

�​ It provides a friendly graphical user interface which proves to be better

when compared to the existing system.

�​ It gives appropriate access to the authorized users depending on their

permissions.

�​ It effectively overcomes the delay in communications.

�​ Updating of information becomes so easier.

�​ System security, data security and reliability are the striking features.

�​ The System has adequate scope for modification in future if it is

necessary.

FUTURE ENHANCEMENTS:

 This application avoids the manual work and the problems concern with it.

It is an easy way to obtain the information regarding the various products information

that are present in the Library of a particular college.

 Well I and my team members have worked hard in order to

present an improved website better than the existing one’s regarding the information

about the various activities. Still ,we found out that the project can be done in a better

way. Primarily, when we request information about a particular product it just shows the

company, product id, product name and no. of quantities available. So, after getting the

information we can get access to the product company website just by a click on the

product name .

 The next enhancement that we can add the searching option.

We can directly search to the particular product company from this site .These are the

two enhancements that we could think of at present.

​

BIBLIOGRAPHY

The following books were referred during the analysis and execution phase of the
project

MICROSOFT .NET WITH C#
Microsoft .net series

ASP .NET 2.0 PROFESSIONAL
Wrox Publishers

ASP .NET WITH C# 2005
Apress Publications

C# COOK BOOK
O reilly Publications

PROGRAMMING MICROSOFT ASP .NET 2.0 APPLICATION
Wrox Professional Guide

​ ​ ​ ​ ​
​ BEGINNING ASP .NET 2.0 E-COMMERCE IN C# 2005
​ Novice to Professional.

WEBSITES:
 www.google.com
 www.microsoft.com

http://www.google.com
http://www.microsoft.com

	
	Connectivity and Cardinality
	ER Notation

	OVERVIEW OF TECHNOLOGIES USED
	
	Microsoft .NET Framework
	Features of the Common Language Runtime:-
	.NET Framework Class Library:-
	Client Application Development:-
	Server Application Development:-
	Language Support
	SQL Server Features
	Ease of installation, deployment, and use
	Scalability
	Data warehousing
	System integration with other server software
	Databases

	DATABASE MODELS
	Common Type system (CTS)
	Categories of datatypes
	Boxing and unboxing

	Features of C# 2.0
	Partial class
	Generics
	Static classes
	A new form of iterator providing generator functionality
	Anonymous delegates
	Delegate covariance and contravariance
	The accessibility of property accessors can be set independently
	Nullable types

	INTRODUCTION TO HTML4.0
	What is HTML?

	SOFTWARE METHODOLOGY
	White-box testing:
	Block-box testing:
	Acceptance Testing:

