Deep Learning Course 2 - Week 1 (Jan 12, 2018 11:00 am) Practical aspects of Deep Learning

Definitions/Notes

- Splitting data
 - The train set is used to fit the model
 - The dev set is used to tune hyperparameters
 - The test set is used to evaluate the model
- Rule of thumb
 - o Old: 70/30/. or 60/20/20 split
 - New (with big data): 98/1/1 or 99.5/0.25/0.25 split
- Basic recipe
 - o If high bias then train a bigger network or train for longer
 - o If high variance then get more data or apply regularization
- Bias Variance Tradeoff
 - o Small bias and variance is better
 - With deep learning there are methods with very little tradeoff between minimizing bias/variance;
 i.e., we can decrease bias without increasing variance (much), and we can decrease variance without increasing bias (much).
- Regularization
 - Helps to prevent overfitting
 - L1 regularization (also called lasso regression) produces sparse models
 - L2 regularization (also called ridge regression or weight decay) is more common than I1 regularization
 - The regularization hyperparameter lambda is chosen using cross-validation.
- Dropout
 - A regularization technique that randomly drop neurons and set their connections equal to zero
 - o Inverted dropout: drop units with a probability p, then divide the activations by 1-p.
 - o Dropout forces you the model to learn a "smaller" neural network
 - With dropout, the neural network can rely on any one feature too much.
- Data augmentation
 - Intuition: create synthetic data that are realistic to train on (more data helps training)
 - o For example, we can mirror flip images
- Early stopping
 - Monitor dev set error and stop training when dev set error starts to increase
- Normalize inputs
 - Subtract the mean
 - Divide by the standard deviation
 - This puts the inputs on relatively the same scale which helps gradient descent converge
- Weight Initialization
 - Careful initialization of the network's weights can help with training
 - o If using a relu activation then then initialize as a normal with std=sqrt(2/n)
 - If using tanh activation then initialize as a normal with std=sqrt(1/n) or use xavier initialization

Questions

When is it okay to not have a test set (and only a dev set)?
 If we only care about tuning the model and not getting an unbiased estimate of the generalization error then we only need a dev set and not a test set.

- Why is it important for the dev set comes from the same distribution as the test set.

 If we have a test set, then test performance is what we care about and so it makes sense to have a dev set similar to the test set.
- Why does regularization prevent overfitting?
 See Statistical Learning Ch6 Notes.
- Does the size of the dev set always need to be the same as the test set?