

Speedometer 3 - Editing Text Scenario
Brian Grinstead, Feb 2023

Context: This is a research document for a Speedometer “scenario” as outlined here. The goal
is to figure out the essential elements of this scenario (libraries, patterns, etc) and one or more
workloads that capture those.

Motivation: Lots of people edit text content in the browser. Lots of that content, like WYSIWYG
content or code, is too rich or complex to represent well with a `<textarea>`. Sites typically rely
on advanced editor libraries for this, and we should make sure browsers perform well with them.
Note: this analysis is not meant as a benchmark or judgment on the libraries themselves, but as
input to the benchmark.

Tech we expect it to exercise: Forms / Editing, Infinite scrolling / virtualization. The workload
“shell” could be adapted easily to test inline SVG icons or additional layout & CSS features.

TLDR: The most salient technical aspect here is the library. These are quite complex and
~nobody is rolling their own rich editors but lots of people want to have the feature. While there
are a relatively small number of very popular libraries there is not a single winner. Additionally,
initial analysis indicates that they each perform differently enough that it wouldn’t be redundant
to test more than one. So we should test a number of popular libraries with a similar workload
for each (using something like the design of the Monaco editor workload in GrandPrix).

Results from library research
An initial list of libraries1 was compiled based on online searches for popular code and
WYSIWYG libraries, and lists on related GitHub Topics. For each library the current number of
weekly NPM downloads, number of GitHub stars, and other project indicators were gathered.

Then a prototype test harness (source code) was created to integrate each using information
from project documentation and online searching when necessary. The harness renders each
editor in a variety of configurations:

-​ Viewport size (small, medium, large)
-​ Length of text / code (small, large)
-​ WYSIWYG formatting / code highlighting (on/off)

That harness was then used for manual testing across browsers and capturing a profile in
Firefox. Note that the specific details about performance in Firefox are not important. The
relevant observation from this work is that there’s a good amount of variety in the shape of the

1 Monaco, CodeMirror, Ace | TipTap, Quill, EditorJS, TinyMCE

https://docs.google.com/document/d/1BCAlKWqILFtoqH6wLRQc1RtFukY60nuEotjvEQZANgg/edit
https://bgrins.github.io/editor-tests/
https://github.com/bgrins/editor-tests
https://share.firefox.dev/3xDdkAR

work done within popular libraries, which indicates there’s value in including more than just the
Monaco test. Here are some observations about each:

●​ Monaco is JS and worker heavy, and the test does cause some jank across browsers. It
seems like an obvious candidate for inclusion as it's extremely popular and the de facto
option for in-browser IDEs these days. There’s a busy worker that runs even after
rendering is complete (presumably still trying to parse the large JS file for syntax
highlighting).

●​ CodeMirror is JS heavy, along with some layout and DOM. Note: this integration
revealed additional Firefox-specific jank in DOM which is being investigated, but is not
relevant to whether we include it or not.

●​ Ace is JS heavy, along with some layout and GC. I have not integrated this perfectly, as
it’s throwing an error at “http://localhost:5173/worker-javascript.js”.

●​ TipTap is reflow heavy. It also seems to be a popular newer choice for WYSIWYG and is
likely worth including.

●​ Quill spends a lot of time in DOM. It’s using MutationEvents which is not recommended,
and should probably be omitted for that reason.

●​ EditorJS is causing the most jank. It's quite different from the others, being a "block
editor", so it’s likely not being integrated in a typical way (with long stretches of normal
paragraph text). Also unsure if this would not be a good proxy for “block editor” style
applications.

●​ TinyMCE is layout heavy. Good candidate for inclusion as it’s very popular, and seems
to be an extremely thin wrapper around contentEditable (i.e. you call execCommand
directly for formatting operations). This is probably not an option though due to licensing.
CKEditor wasn’t tested but may have similar characteristics and includes MPL so we
may consider if everyone would be OK with that. One more option could be to directly
use contentEditable.

All of these create interesting profiles, but the most likely candidates for new workloads based
on this analysis are Monaco, CodeMirror and/or Ace (selecting only one if we want to limit
representation of code editing), TipTap, and some sort of thinner contentEditable library
dependant on licensing.

Workload Limitations
It appears to not be possible within the framework to test actual text editing (by simulating key
events etc), so “editing” is restricted to `setValue` and `formatRange` style API calls to the
editors. This is not fully realistic to real world usage, although these API calls are typically
required for initial rendering and interactivity and likely slower than incremental modifications as
a result of key presses.

https://www.tiny.cloud/docs-3x/extras/TinyMCE3x@License/
https://ckeditor.com/docs/ckeditor4/latest/guide/dev_license.html

Appendix: Research Notes
Following are raw notes from the investigation. They’re left for transparency, but probably aren’t
interesting on their own.

Potential elements to test
●​ Rich text vs code

○​ Q: Are these different enough performance-wise to include both?
■​ A test harness page for research which loaded the top N of each kind and

allowed us to profile while setting text in each would be very helpful to
assess this.

●​ [bgrins] I’ve started working on this at
https://github.com/bgrins/editor-tests /
https://bgrins.github.io/editor-tests/ . Here’s a profile as of Feb 9
covering CodeMirror, Ace, TipTap, Quill, and Editor.js
https://share.firefox.dev/3JXc6rw. Monaco to follow.

●​ Editing vs viewing
○​ Q: GrandPrix workload only loads the text, should we also simulate edits? Can

we effectively simulate edits across all rich editors using the framework?
■​ Smaug: Some kind of input could get through using

document.execCommand. Key events are trickier, since the testing
framework can't create trusted events

■​ Bgrins: Unfortunately our best bet may be to rely on `setValue` type
functions for each library. I suspect this will hit most of the expensive work
that would happen with real key events. This can be used to capture
“length and complexity of text” below

●​ User chrome (toolbars, buttons, etc)
○​ Unlikely to have a material impact on scores. It’s not a bad idea to add a gdocs or

vscode-like chrome to an app shell to exercise inline SVG icons and additional
layout, but I wouldn’t make it a variable for tests and I also wouldn’t prioritize that
over core workload development.

●​ Library choice
○​ This is likely the best candidate to generate multiple workloads. There appear

to be some widely popular choices, and my hypothesis is that they will have fairly
different performance characteristics, but we need to validate that.

●​ Length and complexity of text
○​ I think multiple variations can be supported in a single workload (as per above

this could be done by setting and then resetting the value in an editor as separate
steps). My intuition is that we should have 2: a “relatively simple” and “relatively
complex” set of text to load in each workload.

●​ Formatting (syntax highlighting, B/I/U)

https://github.com/bgrins/editor-tests
https://bgrins.github.io/editor-tests/
https://share.firefox.dev/3JXc6rw

Resources
●​ https://www.wappalyzer.com/technologies/rich-text-editors/

○​ TinyMCE, Ace, CKEditor, …
○​ There are likely some methodological issues with collection here. Hypothesis -

due to reliance on scraping and rich editing features are likely to be behind logins
or at least some user interaction. Library detection can also be tricky. However
this is a good starting point and indicates that we should look at some of the older
and more direct contentEditable libraries like TinyMCE. Will add to the test page.

●​ Switching Rich Text Editors (Feb 2022)
https://www.ashbyhq.com/blog/engineering/tiptap-part-1. They went with TipTap after
evaluating the following: Slate 0.63.0 (20.6k ⭐), Quill 1.3.7 (29.9k ⭐️), ProseMirror
(5.7k ⭐️), ReMirror1.0.0-next.60 (1.1k ⭐️), tiptap 2.0.0-beta60 (10.8k ⭐️)

●​ A good resource comparing popular editors from Quill’s doc
https://github.com/quilljs/quill/blob/795dd1e407d404d0fb0a1918dc0197f6cb937267/web
site/content/guides/comparison-with-other-rich-text-editors.mdx

○​ CKEditor and TinyMCE are widely used but expose contentEditable directly to
users. Quill and others maintain document state and provide a higher level
abstraction.

○​ Unlike Quill, Draft has a React dependency and it also does block editing.
○​ Quill and ProseMirror and Trix are roughly aligned

Popular libraries
●​ Popular code editors: My sense is that there are 2-3 primary underlying libraries here

○​ CodeMirror (3m weekly npm downloads, 3.5k github stars). Used by jsfiddle,
codepen,

■​ https://github.com/codemirror/dev/
■​ https://www.npmjs.com/package/codemirror
■​ [bgrins] Does this current version use contentEditable?

○​ Monaco (700k weekly npm downloads, 32k github stars). Used by GitHub,
StackBlitz, CodeSandbox, Repl.it. Probably the most obvious inclusion in the
category.

■​ https://www.npmjs.com/package/monaco-editor
■​ https://github.com/microsoft/monaco-editor
■​ Question: Does this use contentEditable or something self managed?

According to this it uses a hidden textarea. Is that still true?
■​ Integration with vite uses module workers (only supported in Firefox

Nightly atm)
https://twitter.com/youyuxi/status/1355316139144970240?lang=en

○​ Ace (500k weekly npm downloads, 25k stars)
■​ https://github.com/ajaxorg/ace
■​ https://www.npmjs.com/package/ace-builds
■​ Appears to use a hidden textarea for input + normal DOM for rendering

https://www.wappalyzer.com/technologies/rich-text-editors/
https://www.ashbyhq.com/blog/engineering/tiptap-part-1
https://github.com/quilljs/quill/blob/795dd1e407d404d0fb0a1918dc0197f6cb937267/website/content/guides/comparison-with-other-rich-text-editors.mdx
https://github.com/quilljs/quill/blob/795dd1e407d404d0fb0a1918dc0197f6cb937267/website/content/guides/comparison-with-other-rich-text-editors.mdx
https://github.com/codemirror/dev/
https://www.npmjs.com/package/codemirror
https://www.npmjs.com/package/monaco-editor
https://github.com/microsoft/monaco-editor
https://www.mozzafiller.com/posts/how-does-monaco-editor-enable-text-editing-on-a-web-page
https://twitter.com/youyuxi/status/1355316139144970240?lang=en
https://github.com/ajaxorg/ace
https://www.npmjs.com/package/ace-builds

●​ Rich text editors: My sense is that there are less clear winners here, although I believe
many are built on top of underlying libraries like ProseMirror. From a quick audit it
appears that these are pretty much all built on top of contentEditable, so it’s possible that
they may have similar performance characteristics. Many maintain their own document
state on top of that and so it’s possible they act quite differently, especially with large
docs or lots of edits.

○​ Sourced from https://github.com/topics/rich-text-editor &
https://github.com/topics/wysiwyg.

■​ Quill (35k stars, 1.1m downloads). last published on npm 3 years ago.
Also uses Mutation Events.

●​ https://github.com/quilljs/quill
●​ https://www.npmjs.com/package/quill
●​ Note: used by hrblock

■​ Slate (25k stars, 550k weekly downloads). “You can think of it like a pluggable
implementation of contenteditable built on top of React. It was inspired by libraries
like Draft.js, Prosemirror and Quill.”

●​ https://github.com/ianstormtaylor/slate
●​ https://www.npmjs.com/package/slate
●​ Marked as “in beta” in the repo
●​ Structure is specified as an object (similar to Editor.js), see

example at
https://github.com/ianstormtaylor/slate/blob/d0d1cb981b469d5231
6d5d134df395f02f3b3bf7/site/examples/richtext.tsx

■​ Trix (17k stars, 180k weekly downloads). Appears to wrap over
contentEditable as per README.

●​ https://github.com/basecamp/trix
●​ https://www.npmjs.com/package/trix

■​ Editor.js (21k stars, 40k weekly). Block style. Appears to use
contenteditable for each block.

●​ https://github.com/codex-team/editor.js
https://www.npmjs.com/package/@editorjs/editorjs

■​ TipTap (18k stars, ~200k npm downloads). Uses ProseMirror under the
hood, so contenteditable

●​ https://github.com/ueberdosis/tiptap
●​ https://www.npmjs.com/package/@tiptap/react - React is more

popular wrapper
●​ https://www.npmjs.com/package/@tiptap/vue-3
●​
●​ [bgrins] I’ve used this one and it has lots of good docs / examples

■​ ProseMirror typically used as a dependency for higher level editors (see
TipTap for example). Uses contenteditable.

●​ https://github.com/ProseMirror/prosemirror
■​ TinyMCE (12k stars, 400k downloads). One of the OGs, uses

contentEditable under the hood
●​ https://github.com/tinymce/tinymce

https://github.com/topics/rich-text-editor
https://github.com/topics/wysiwyg
https://github.com/quilljs/quill
https://www.npmjs.com/package/quill
https://github.com/ianstormtaylor/slate
https://www.npmjs.com/package/slate
https://github.com/ianstormtaylor/slate/blob/d0d1cb981b469d52316d5d134df395f02f3b3bf7/site/examples/richtext.tsx
https://github.com/ianstormtaylor/slate/blob/d0d1cb981b469d52316d5d134df395f02f3b3bf7/site/examples/richtext.tsx
https://github.com/basecamp/trix#different-by-design
https://github.com/basecamp/trix
https://www.npmjs.com/package/trix?activeTab=readme
https://github.com/codex-team/editor.js/search?q=contenteditable
https://github.com/codex-team/editor.js
https://www.npmjs.com/package/@editorjs/editorjs
https://github.com/ueberdosis/tiptap
https://www.npmjs.com/package/@tiptap/react
https://www.npmjs.com/package/@tiptap/vue-3
https://github.com/ProseMirror/prosemirror
https://github.com/tinymce/tinymce

●​ https://www.npmjs.com/package/tinymce
■​ Gutenberg (8.5k stars, 25k downloads, GPL license) Used by

Wordpress. A broader scope than some of these, intended to enable full
site editing.

●​ https://github.com/WordPress/gutenberg
●​ https://www.npmjs.com/package/@wordpress/block-editor

■​ https://github.com/yabwe/medium-editor (15k stars) No recent updates

Existing Workloads
●​ GrandPrix has a Monaco test

https://github.com/GoogleChromeLabs/GrandPrix/tree/main/resources/benchmarks/mon
aco-editor. It opens various code files with and without syntax highlighting (see
screencast below)

○​ I think we can add this to tentative/ in a fork as a test harness for the libraries
above

●​ I’ve set up a harness for evaluating a number of the popular libraries at
https://github.com/bgrins/editor-tests

Profile findings
Running https://bgrins.github.io/editor-tests/ in Firefox, I observe the following profile
https://share.firefox.dev/41jRpfm and callstacks (gathered by setting the selection to each
usertiming duration and switching to Call Tree tab).

https://www.npmjs.com/package/tinymce
https://github.com/WordPress/gutenberg
https://www.npmjs.com/package/@wordpress/block-editor
https://github.com/yabwe/medium-editor
https://github.com/GoogleChromeLabs/GrandPrix/tree/main/resources/benchmarks/monaco-editor
https://github.com/GoogleChromeLabs/GrandPrix/tree/main/resources/benchmarks/monaco-editor
https://github.com/bgrins/editor-tests
https://bgrins.github.io/editor-tests/
https://share.firefox.dev/41jRpfm

Code Editors

Monaco CodeMirror Ace

389ms
JS > Layout > DOM

726ms
DOM > JS > Layout
Note that the DOM timing
may be Firefox-specific jank

216ms
JS > Idle > Layout > GC
I haven’t integrated the
language Worker properly

WYSIWYG Editors

TipTap Quill EditorJS TinyMC

315ms
Layout > JS > GC

367ms
JS > Layout > GC

1714ms
JS > Layout > DOM

316ms
JS > Layout > Idle

https://bugzilla.mozilla.org/show_bug.cgi?id=1816312

Learnings
●​ Be more systematic with library metadata collection (license etc) and selection for

inclusion in a test harness
●​ Actually integrating code into a webpage is invaluable. The Vite boilerplate for

https://github.com/bgrins/editor-tests/ was good enough - it’s been iterated on in
https://github.com/bgrins/data-ui-tests, and I’ve also documented how to host it easily on
gh-pages with https://briangrinstead.com/blog/publishing-vite-project-to-github-pages/

●​ Async initialization should be handled better (try to simulate what Speedometer does).
For example the Monaco language worker.

https://github.com/bgrins/editor-tests/
https://github.com/bgrins/data-ui-tests
https://briangrinstead.com/blog/publishing-vite-project-to-github-pages/

	Speedometer 3 - Editing Text Scenario
	Results from library research
	Workload Limitations
	Appendix: Research Notes
	Potential elements to test
	Resources
	Popular libraries
	Existing Workloads
	Profile findings
	Code Editors
	WYSIWYG Editors

	Learnings

