
Dispatcher framework and BFCache 

WPTs landing plan 

hiroshige@chromium.org 
 
PUBLIC. This doc was used to share planning ideas within Chromium, and the contents of this 
doc is mostly included in common/dispatcher/README.md in 
https://github.com/web-platform-tests/wpt/pull/28950. 
 
(Previous state: Private, I'll post a brief summary at RFC 89 (because most of this doc is about 
`RemoteContext.execute()`) + a link to this doc, and then include the details as 
comments/READMEs in wpt PRs.) 
 

Overview 

Proposed steps: 
●​ Land pure JavaScript executor framework originating from COEP/COOP under 

`common/dispatcher/` (CL 3033199), 
●​ Define a new API interface on top of that (CL to be linked), and 
●​ Land BFCache WPTs on top of the new API (CL 2885636 and to-be-split CL 2798554). 
●​ Discuss testharness/testdriver integration later separately. 

 
The `common/dispatcher/` library will have two sets of APIs: 

●​ Existing APIs for COEP/COOP tests, such as `send()`, `receive()`, etc. These APIs 
and COEP/COOP tests will be kept mostly as-is, because according to the discussion on 
RFC 90: [testdriver] Primitives for cross-context messaging #90, we need more work on 
both the COEP/COOP tests and framework sides to adopt the RFC to existing 
COEP/COOP tests. 

●​ New API, `RemoteContext` (and some helpers needed on the executor side), that is 
basically the same as the following RFCs (see below for diffs/additions), is built on top of 
the existing APIs above, and is used for implementing BFCache tests. 

○​ RFC 88: [testdriver] Extend the mechanisms for giving browsing contexts ids. #88 
○​ RFC 89: [testdriver] Add an execute_script function to testdriver. #89 
○​ RFC 91: [testdriver] RemoteContext object #91 

 
I expect we can decouple the test framework discussion from the BFCache landing plan, 
because 

●​ The new API has a solid API semantics (see below) so that we can switch the underlying 
implementation to the jgraham's testdriver-based version in the future. I confirmed this 

mailto:hiroshige@chromium.org
https://github.com/web-platform-tests/wpt/pull/28950
https://github.com/web-platform-tests/rfcs/pull/89
https://chromium-review.googlesource.com/c/chromium/src/+/3033199
https://chromium-review.googlesource.com/c/chromium/src/+/2885636
https://chromium-review.googlesource.com/c/chromium/src/+/2798554
https://github.com/web-platform-tests/rfcs/pull/90
https://github.com/web-platform-tests/rfcs/pull/88
https://github.com/web-platform-tests/rfcs/pull/89
https://github.com/web-platform-tests/rfcs/pull/91


by CL 3082215, which switches the impl to the testdriver-based version without 
modifying test bodies. 

●​ I expect the discussions are more about a good API interface, not necessarily 
testdriver-integrated, so having a consensus on the new API would be sufficient to 
unblock the BFCache WPTs. I expect the RFC discussions so far + this proposal will 
address the review comments like: 

○​ https://github.com/web-platform-tests/rfcs/pull/86#issuecomment-881681930 
○​ https://github.com/web-platform-tests/rfcs/pull/86#issuecomment-887311284 
○​ https://github.com/web-platform-tests/wpt/pull/28950#discussion_r669395488 
○​ https://chromium-review.googlesource.com/c/chromium/src/+/3055392/3#messag

e-7ec7ea77911b70b715695364ef9a92ea8a729bc5 

The new API semantics 

Mainly diffs from/additions to the RFCs 88, 89, and 91. 
 
The core part is the additional semantic clarifications and test writing guidelines in Evaluation 
timing of Injected scripts section, because in BFCache tests it's very important to understand 
and control the interaction and timing around injected scripts and navigation. 

Usage 
We'd inject scripts like: 
 
```​
// injector.html 

const argOnLocalContext = ...; 

 

window.open('executor.html?uuid=' + uuid); 

const ctx = new RemoteContext(uuid); 

await ctx.execute( 

    (arg) => functionOnRemoteContext(arg), 

    [argOnLocalContext]); 

``` 
 
and on executor we provide a helper class `Executor`. `Executor` is not strictly needed for the 
testdriver-based version itself (and thus will be mostly no-op), but is needed for the 
COEP-based impl. 
 
``` 
// executor.html 

function functionOnRemoteContext(arg) { ... } 

 

https://chromium-review.googlesource.com/c/chromium/src/+/3082215
https://github.com/web-platform-tests/rfcs/pull/86#issuecomment-881681930
https://github.com/web-platform-tests/rfcs/pull/86#issuecomment-887311284
https://github.com/web-platform-tests/wpt/pull/28950#discussion_r669395488
https://chromium-review.googlesource.com/c/chromium/src/+/3055392/3#message-7ec7ea77911b70b715695364ef9a92ea8a729bc5
https://chromium-review.googlesource.com/c/chromium/src/+/3055392/3#message-7ec7ea77911b70b715695364ef9a92ea8a729bc5
https://docs.google.com/document/d/1vX_9vSDZJfzCFq4rjKbMoROpjabJM4ZX5Q0ELjR3b0I/edit#bookmark=id.6dkds97hppnc
https://docs.google.com/document/d/1vX_9vSDZJfzCFq4rjKbMoROpjabJM4ZX5Q0ELjR3b0I/edit#bookmark=id.6dkds97hppnc


const executor = new Executor(uuid from location.search); 

``` 

Limited Scope 
●​ Only `RemoteContext` constructor with a string UUID argument and 

`RemoteContext.execute()` are implemented. 
●​ `RemoteContext` isn't integrated with testdriver/testharness. 
●​ RFC 90: [testdriver] Primitives for cross-context messaging #90 is not supported, as 

BFCache WPTs don't need directly using send/receive() primitives right now. 

Always `await execute()` 
`RemoteContext.execute()` processing can be serialized, and thus always wait for the 
resolution of the promise returned by `RemoteContext.execute()` before calling next 
`RemoteContext.execute()`. 
So it's a good practice to always write `await ctx.execute(...)`. 
 
This isn't strictly needed for COEP-based impl, but anyway I expect enforcing this would make 
the tests easier to read and debug. I'm not sure whether this can be enforced to existing 
COEP/COOP tests though. 

Evaluation timing of Injected scripts 
The script injected by `RemoteContext.execute()` can be evaluated any time, e.g. even 
before DOMContentLoaded events or even during navigation, and it's the responsibility of 
test-specific code/helpers to ensure evaluation timing constraints (which can be test-specific). 
 
Alternatively, we might want the API interface itself to ensure more strict evaluation timing 
restrictions to avoid the additional synchronization code like the following subsections. 
But probably it's better to keep the script injection layer (i.e. `RemoteContext.execute`) simple 
for now (and consider more strict timing restrictions later), 

●​ In order to unblock BFCache WPTs earlier. 
●​ Because I'm not so confident about what kind of timing restrictions should work for other 

cases, like prerendering. 
●​ The additional synchronization code below can be mostly in helper JavaScript file and 

doesn't affect test bodies so much. 

Evaluation timing around page load 
To avoid race conditions between injected script evaluation and page load, we can use pure 
JavaScript code like below, to ensure `mainCode` is evaluated after the first pageshow event:​
 

https://github.com/web-platform-tests/rfcs/pull/90


// executor.html​
window.pageShowPromise = new Promise(resolve =>​
    window.addEventListener('pageshow', resolve, {once: true}));​
 

// injector.html​
const waitForPageShow = async () => { 

  while (!window.pageShowPromise) { 

    await new Promise(resolve => setTimeout(resolve, 100)); 

  } 

  await window.pageShowPromise; 

};​
await ctx.execute(waitForPageShow); 

await ctx.execute(mainCode); 

Evaluation timing around navigation out 
 

To avoid race conditions between script injection framework and navigation/unloading: 
 

●​ Do not call the next `RemoteContext.execute()` for the context after triggering the 
navigation, until we are sure that the context is not active (e.g. after we confirm that the 
new page is loaded). AND 

●​ Call `Executor.suspend(callback)` synchronously within the injected script. This 
suspends executor-related code to avoid race between navigation and executor-related 
code. 

○​ TODO: the name suspend() might be confusing, because it doesn't suspend 
injected script evaluation in testdriver version. 

Additional notes on `RemoteContext.execute` 
Already posted at https://github.com/web-platform-tests/rfcs/pull/89#issuecomment-896327379: 
 

●​ When the return value of an injected script is a Promise, it should be resolved before any 
navigation starts (i.e. shouldn't be resolved after navigating out and navigating back 
again). It's fine to create a Promise to be resolved after navigations, if it's not the return 
value of injected scripts. 

●​ `RemoteContext.execute` should wait for the target context to be created or to become 
active (i.e. window.open, back-navigation from BFCache, etc.). 

○​ This is already the case for COEP-based impl, but there are no way to do this in 
testdriver-based version. 

○​ I made WPTRunner's switch_to_window() to retry until the target is found in my 
draft as a temporary workaround. 

 
 

https://github.com/web-platform-tests/rfcs/pull/89#issuecomment-896327379

	Dispatcher framework and BFCache WPTs landing plan 
	Overview 
	The new API semantics 
	Usage 
	Limited Scope 
	Always `await execute()` 
	Evaluation timing of Injected scripts 
	Evaluation timing around page load 
	Evaluation timing around navigation out 

	Additional notes on `RemoteContext.execute` 


