

Why did you post your lecture notes in a publicly-shared document?

I'm not even in this class where did this come from

MODULE 1

LECTURE 1 3-Dimensional Rectangular System (8/23/24)

- 3d plane
- distance from point to xy plane = |z|
- distance from point to axis = find point on axis closest to it and use distance formula

LECTURE 2 Vectors (8/26/24)

- graphing plane through point
- Outline
- MODULE 1
- LECTURE 1 3-Dimensional Rectangular System (8/23/24)
- LECTURE 2 Vectors (8/26/24)
- LECTURE 3 Dot Product (8/26/24)
- LECTURE 4 Cross Product (8/29/24)
- LECTURE 5 Lines and Planes (9/3/24)
- LECTURE 6 Cylinders and Quadric Surfaces (9/6/24)
- LECTURE 7 Vector-Valued Functions (9/9/24)
- LECTURE 8 Arc Length and Curvature (9/11/24)
- LECTURE 9: Motion in Space (9/14/24)
- MODULE 2
- LECTURE 10: Functions of Several Variables (9/19/24)
- LECTURE 11: Limits and Continuity (9/23/24)

- LECTURE 12: Partial Derivatives (9/25/24)
- •
- •
- \circ yz-plane through (x,y,z), just look at x
- circle in R³ is a cylinder
- inequalities
- Vectors
 - represented by directed line segment (initial A terminal B) and length/magnitude |AB|
 - equal if same magnitude & direction, location doesn't matter
- Vector addition
 - tip to tail or parallelogram
- position vector has initial point at origin
- vector addition easy
- scalar multiplication easy
- properties of operations (vectors u,v,w scalars c,d)
 - o u+v=v+u

- ∘ **u+0=u**
- **u+(-u)=0**
- c(u+v)=cu+cv
- (c+d)u=cu+du
- **0u=0**
- ∘ c0=0
- **1u=u**
- o c(du)=(cd)u=d(cu)
- vector magnitude = sqrt(x²+y²+z²)
- unit vector has length 1

- \circ to find unit vector, divide vector by magnitude
- standard basis vector notation
 - i=<1,0,0>vxcvxcvb
 - j=<0,1,0>
 - k=<0,0,1>
 - 487932i + 6824j 2993k

LECTURE 3 Dot Product (8/ $\cos\theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\|}_{26/24}$

• dot product - multiply the components then add it all up

• **F** • **D**

|F||D|cosθ

LECTURE 4 Cross Product (8/29/24)

• cross product - easy

Algebraic Properties of the Cross Product If \vec{u} , \vec{v} and \vec{w} are vectors and c is a scalar, then

1.
$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{v}$$

2.
$$\vec{u} \times \vec{u} = \vec{0}$$
 parallel

3. $(c\vec{u}) \times \vec{v} = c(\vec{u} \times \vec{v}) = \vec{u} \times (c\vec{v})$

4.
$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$$

5.
$$(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$$

6.
$$\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$$

• triple product - not easy

The triple product $\vec{u} \cdot (\vec{v} \times \vec{w})$ can be calculated using a determinant:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

• V = height x area of base

Example

- the area of base is just area of parallelogram or magnitude of cross product |v x w|
- the height is perpendicular to v and w so it is v x w

LECTURE 5 Lines and Planes (9/3/24)

- to define line, we need point P₀<x₀,y₀,z₀> and vector v =
 <a,b,c> parallel to the line
 - $r = r_0 + vt$ (t is a scalar multiple)
 - \circ <x₀,y₀,z₀>+t<a,b,c> (called vector equation)
- Line segment
 - $\circ r(t) = (1-t) < x_0, y_0, z_0 > +t < x_1, y_1, z_1 >$
 - initial point at t=0, terminal point at t=1
 - will not be used until line integrals (module 4)
- Parametric equation component by component

• Symmetric equation - solve for t

to define a plane, we need a point on the plane and a normal vector

 to find d take each component of normal and multiply it by each component of the point *-1

Equations of a Plane	
Scalar Equation of the Plane	Linear Equation of the Plane
$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$	ax + by + cz + d = 0

NOTE: The coefficients *a*, *b*, and *c* are the components of the normal vector to the plane.

Parallel and Orthogonal PlanesTwo planes are said to be parallel if their
normal vectors are parallel $(\overrightarrow{n_1} = \overrightarrow{cn_2})$.Two planes are said to be orthogonal if
their normal vectors are orthogonal
 $(\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0)$.

- literally just look at the normal vector to determine parallel/orthogonal/neither
 - if it's line vs plane it'll be reversed if using the vector of the line, so if the dot product is 0 they're parallel and if it looks parallel it's orthogonal. kinda stupid lol
- find the angle between two planes
 - just find angle between normal vectors using:

 find parametric equations for line of intersection of two planes

- v is perpendicular to both normal vectors so cross both normal vectors to find v
- to find a point on the line, fix a value (x/y/z) and solve for the other two (x/y/z) (this might not work maybe)
- find distance from point to plane

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

 \circ Proof:

- \circ x₁,y₁,z₁ is the point and a,b,c,d is the plane
- find distance from two parallel planes
 - find a point on one of the planes then the problem is the same as point to plane

LECTURE 6 Cylinders and Quadric Surfaces (9/6/24)

• conic sections because i forgot

- whatever the is on is the axis of the vertical/horizontal asymptote
 - technically they have diagonal asymptotes or something
- in this world a cylinder doesn't have to have a circle as a base, it can be a triangle or whatever tf
 - this makes any 2d graph in R³ a cylinder i think
- NO DRAWING ON EXAMS!!!

A quadric surface is a 3D surface whose equation is of the second degree.

The general equation is $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$, given that $A^2 + B^2 + C^2 + D^2 + E^2 + F^2 \neq 0$.

With rotation and translation, these possibilities can be reduced to two distinct types.

- 1. $Ax^2 + By^2 + Cz^2 + J = 0$ (All three quadratic terms; no linear terms)
- 2. $Ax^2 + By^2 + Iz = 0$ (Only two quadratic terms plus one linear term)

type 1 surfaces

type 2 surfaces

Basic Quadric Surface

LECTURE 7 Vector-Valued Functions (9/9/24)

- domain of vector-valued function is intersection of domains of each component
- curve sketching
- helix
- the limit of vector-valued function is just taking limit of each component
 - if ANY component limit doesn't exist, the functions limit doesn't exist
- vector-valued function is continuous at a if
 - defined at each component
 - limit exists at each component
 - and they're equal (the point at a and the limit)
- first principle derivative XD
 - fuck that just derive each component

• this just gives direction ^

Example

A. Find a vector function that represents the curve C of intersection of the cylinder $x^2 + y^2 = 4$ and the plane y - z = 2.

X= 2cost y= 2sint Z= y-2 = 2sint-2 r(t)= <2cost, 2sint, 2sint - 2 there's a circle so sin and cos are used ^

Vector-Valued Functions

A curve $\vec{r}(t)$ is smooth on an interval I if

 $\overrightarrow{r'}(t)$ is continuous and $\overrightarrow{r'}(t) \neq \overrightarrow{0}$

On *I*. A curve that is made up of a finite number of smooth curves pieced together in a continuous fashion is called piece-wise smooth.

Differentiation Rules

Let \vec{u} and \vec{v} be differentiable vector-valued functions, f(t) a differentiable real-valued function, \vec{C} a constant vector, and c a constant. Then

1. $\frac{d}{dt}\left[\vec{C}(t)\right] = \vec{0}$

- 5. $\frac{d}{dt}[\vec{u}(t)\cdot\vec{v}(t)] = \vec{u'}(t)\cdot\vec{v}(t) + \vec{u}(t)\cdot\vec{v'}(t)$
- 2. $\frac{d}{dt}[\vec{u}(t) + \vec{v}(t)] = \vec{u'}(t) + \vec{v'}(t)$
- 6. $\frac{d}{dt}[\vec{u}(t) \times \vec{v}(t)] = \vec{u'}(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v'}(t)$

3. $\frac{d}{dt}[c\,\vec{u}(t)] = c\,\vec{u'}(t)$

- 7. $\frac{d}{dt}[\vec{u}(f(t))] = \vec{u'}(f(t))f'(t)$
- 4. $\frac{d}{dt}[f(t)\vec{u}(t)] = f'(t)\vec{u}(t) + f(t)\vec{u'}(t)$

LECTURE 8 Arc Length and Curvature (9/11/24)

Arc Length

Extension to 3D

There is a natural extension of this to 3D. Consider a curve $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, $a \leq t \leq b$, where f', g', and h' are continuous. If the curve is traversed exactly once as t increases from a to b, then its length is

$$L = \int_{a}^{b} \int [f'(+)]^{2} + [g'(+)]^{2} + [h'(+)]^{2}$$

Arc Length Function

Definition

Π

Suppose that C is a piecewise smooth curve given by a vector-valued function $\vec{r}(t)$ = $\langle f(t), g(t), h(t) \rangle$, $a \le t \le b$. The arc length function is defined how far we've gone $\int_{t}^{t} \frac{1}{1-t^2} \frac{1}{2} \frac{$

$$f(t) = \int_{a}^{t} \sqrt{\left[f'(v)\right]^{2} + \left[g'(v)\right]^{2} + \left[h'(v)\right]^{2}} dv$$

The Fundamental Theorem of Calculus tells us that s is differentiable function of t and

$$\frac{ds}{dt} = \sqrt{\left[f'(t)\right]^2 + \left[g'(t)\right]^2 + \left[h'(t)\right]^2}$$

Reparameterization of a Curve

Arc Length know the position

It is often useful to parameterize a curve with respect to arc length since arc length arises naturally from the shape of the curve and does not depend on a particular coordinate system. If a curve $\vec{r}(t)$ is given in terms of a parameter t and s(t) is the arc length function, then

Solve for *t* as a function of s: t = t(s)1.

cost = 1

 $\pm = 0$

Reparametrize the curve in terms of s by substituting 2. for *t*: $\vec{r} = \vec{r}(t(s))$

Example

Reparametrize the helix $\vec{r}(t) = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$ by its arc length starting from (1,0,0) in the direction of increasing t. Use this information to determine the position after traveling $\sqrt{2} \pi$ units on the

sint=0 ξ t=0

nellx.

$$S(+) = \int_{0}^{t} \sqrt{(-\sin u)^{2} + (\cos u)^{2} + 1^{2}} du$$

$$= \int_{0}^{t} \sqrt{\sin^{2} u + \cos^{2} u + 1} du$$

$$= \int_{0}^{t} \sqrt{2} du$$

$$= \sqrt{2} u \int_{0}^{t} \sqrt{2} du$$

Curvature

Formulas and Example

In general, the formal definition of curvature is not easy for calculations. We use the following two alternate formulas.

1. $\kappa(t) = \frac{|\hat{r}'(t)|}{|\vec{r}'(t)|}$ 2. $\kappa(t) = \frac{|\vec{r}'(t) \times \vec{r}'(t)|}{|\vec{r}'(t)|^3}$ Find the curvature of a circle of radius a.

$$\overline{r}(t) = \langle \operatorname{acos}(t), \operatorname{asin}(t) \rangle$$

$$\widehat{\tau}(t) = \frac{\overline{r}'(t)}{|\overline{r}'(t)|} = \frac{\langle \operatorname{asin}t, \operatorname{acos}t \rangle}{\sqrt{a^* \sin^2 t + a^2 \cos^2 t}} = \langle \operatorname{sin}t, \operatorname{cos}t \rangle$$

$$\widehat{\tau}'(t) = \langle \operatorname{cos}t, -\operatorname{sin}t \rangle |\widehat{\tau}'(t)| = \sqrt{\cos^2 t + \sin^2 t} = 1$$

$$k(t) = \frac{|\widehat{\tau}'(t)|}{|\overline{r}'(t)|} = \frac{1}{\alpha}$$

• curvature formula ^

LECTURE 9: Motion in Space (9/14/24)

- yo this triangle thing is cracked for cross product instead of right hand rule
- B is binormal vector its T x N

Find the principal unit normal vector of the helix

$$\vec{r}(t) = 2\cos(t)\hat{i} + 2\sin(t)\hat{j} + t\hat{k}.$$

$$\vec{N} = \frac{T'(t)}{|T'(t)|} \quad \vec{r}'(t) = \langle -2\sin t, 2\cos t, 1 \rangle$$

$$\vec{r} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} \quad \vec{r}'(t) = \sqrt{4\sin^2 t + 4\cos^2 t + 1} = \sqrt{5}$$

$$\hat{\tau} = \frac{1}{\sqrt{5}} \langle -2\sin t, 2\cos t, 1 \rangle$$

$$\hat{\tau}' = \frac{1}{\sqrt{5}} \langle -2\cos t, -2\sin t, 0 \rangle$$

$$|\hat{\tau}'| = \frac{1}{\sqrt{5}} \sqrt{4\cos^2 t + 4\sin^2 t} = \frac{2}{\sqrt{5}}$$

$$\hat{N} = \frac{1}{\sqrt{5}} \langle -2\cos t, -2\sin t, 0 \rangle$$

$$= \langle -\cos t, -2\sin t, 0 \rangle$$

Motion Along a Curve

Definition and Example

Acceleration = $\vec{a}(t) = \vec{r}''(t) = \sqrt{t}(t) = \langle t | (t), g''(t), h''(t) \rangle$

Find the velocity, speed, and acceleration of a particle with position vector

$$\vec{r}'(t) = \langle 2\cos(t), 2\sin(t), t \rangle.$$

$$\vec{r}'(t) = \langle -2\sin t, 2\cos t, 1 \rangle$$

$$\text{Speed} = |\vec{r}'(t)| = \sqrt{4\sin^2 t + 4\cos^2 t + 1}$$

$$\vec{a} = \vec{r}''(t) = \langle -2\cos t, -2\sin t, 0 \rangle$$

Components of Acceleration

tangential

Speed and Direction

We now use the vectors \hat{T} and \hat{N} to gain insight into how moving objects accelerate. The two ways to change the velocity of an object are to change its **speed** and change its **direction** of motion. We now show that changing the speed produces acceleration **in the direction of** \hat{T} and changing the direction produces acceleration **in the direction of** \hat{N} .

normal

"this isn't how we compute these parts"

• the circled equations are how you compute them

Example
A particle moves with position function
$$\vec{r}(t) = (2\cos(t), 2\sin(t), t)$$
. Find the tangential and normal
components of acceleration.
 $a_{T} = \frac{\vec{v} \cdot \vec{a}}{|\vec{v}|} \quad \vec{r}'(t) = \langle -2\sin t, 2\cos t, 1 \rangle = \vec{v}$
 $\vec{a} = \langle 2\cos t, -2\sin t, 0 \rangle$
 $a_{T} = \langle -2\sin t, 2\cos t, 1 \rangle \cdot \langle -2\cos t, -2\sin t, 0 \rangle$
 $a_{T} = \langle -2\sin t, 2\cos t, 1 \rangle \cdot \langle -2\cos t, -2\sin t, 0 \rangle$
 $\vec{a} = \langle 2\sin t, 2\cos t, 1 \rangle \cdot \langle -2\cos t, -2\sin t, 0 \rangle$
 $\vec{a} = \langle 2\sin t, 2\cos t, 1 \rangle \cdot \langle -2\cos t, -2\sin t, 0 \rangle$
 $\vec{a} = \langle 2\sin t, 2\cos t, 1 \rangle \cdot \langle -2\cos t, -2\sin t, 0 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle \cdot \langle -2\cos t, -2\sin t, 0 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle \cdot \langle -2\cos t, -2\sin t, 0 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle = \langle -2\sin t, -2\cos t, 4 \rangle$
 $\vec{v} \times \vec{a} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ -2\sin t, 2\cos t, 1 & 1 \end{vmatrix}$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\sin t, 2\cos t, 1 \rangle$
 $\vec{a} = \langle -2\sin t, 2\sin t, 2\cos t, 2\sin t, 2\sin$

• WTF EQUATION SUMMARY

Formulas for Curves in Space

Summary

Position function: $r(\vec{t}) = \langle f(t), g(t), h(t) \rangle$ Unit binormal vector: $\hat{B} = \hat{T} \times \hat{N}$ Velocity: $\vec{v} = \vec{r'}$ Curvature: $\varkappa = \left| \frac{d\hat{T}}{ds} \right| = \frac{|\vec{r}'|}{|\vec{v}|} = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3}$ how fast a curve is changing a distance is components of acceleration: $\vec{a} = a_T \hat{T} + a_N \hat{N}$ Components of acceleration: $\vec{a} = a_T \hat{T} + a_N \hat{N}$ Unit tangent vector: $\hat{T} = \frac{\vec{v}}{|\vec{v}|}$ direction particle with $a_T = \vec{a} \cdot \hat{T} = |\vec{v}|' = \frac{\vec{v} \cdot \vec{a}}{|\vec{v}|}$ Principal unit normal vector: $\hat{N} = \frac{\hat{T}'}{|\vec{r}'|}$ and $a_N = \vec{a} \cdot \hat{N} = |\vec{v}| |\hat{T}'| = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|}$

NVM THESE ARE GIVEN ON EXAM BRUHH

MODULE 2

LECTURE 10: Functions of Several Variables (9/19/24)

- domain = number we can't put in (log of negative, sqrt of negative, etc.)
- range = range of possible outputs

Function of Two Variables

Definition and Examples y = f(x)

two independent

A function of two variables z = f(x, y)assigns each ordered pair (x, y) in a subset D of \mathbb{R}^2 a unique real number z. The set Dis called the **domain** of f that contains allowable inputs, and its **range** is the set of outputs, the z-values taken on by f. Find the domain and range of the functions:

 $f(x,y) = x^{2} + y^{2}$ Domain $\mathbb{R}^{2} \{(x,y) \mid -\infty < x < \infty, -\infty < y < \infty \}$ Range $[0,\infty)$

 $f(x,y) = x^{2} \sin(y)$ Domain $\mathbb{R}^{2} \{(x,y) \mid -\infty < x < \infty, -\infty < y < \infty\}$ $fix \ y = \frac{\pi}{2} \ f(x, \frac{\pi}{2}) = x^{2} \sin(\frac{\pi}{2}) = x^{2} \ge 0$ $y = \frac{3\pi}{2} \ f(x, \frac{3\pi}{2}) = x^{2} \sin(\frac{3\pi}{2}) = -\chi^{2} \le 0$ $(-\infty, \infty)$

Examples

Find the domain and range of the function:

Find the domain and range of the function:

 $f(x,y) = \frac{x}{y-3}$ Domain $\{(x,y) \mid -\infty < x < \infty, y \neq 3\}$ Fix y=4 $f(x,4) = \frac{x}{4-3} = X$ Range $(-\infty, \infty)$

 $f(x,y) = \sqrt{1 - x^2 - y^2}$ $|-x^2 - y^2 \ge 0$ $\chi^2 + \gamma^2 \le 1$ Domain $\{(x,y) \mid x^2 + \gamma^2 \le 1\}$ Range [0,1]

• Shadow underneath surface is the domain

Graphs Definition and Note

The graph of a function f of two variables is the set of all points (x, y, z) for which z = f(x, y) and (x, y) is in the domain of f. This graph can be interpreted geometrically as a surface in space, as discussed in Lecture 6.

Level Curves

Definition

We noted that traces could be used to help visualize the shape of surfaces and now we introduce the related concept of a level curve (or contour curve).

Given a function f(x, y) and a number k in the range of f, a <u>level curve</u> of f for the value k is defined to be the set of points satisfying the equation.

t(x'x) = K

A collection of level curves of f is called a <u>contour</u> map.

Level Surfaces

Definition

We have examined functions of two variables and now we can extend the concepts naturally to functions of three or more variables. With the function w = f(x, y, z), level curves become level surfaces w = f(x, y, z) = k, where k is in the range of f.

Independent
VariablesExplicit FormImplicit FormGraph Resides In1y = f(x)F(x,y) = 0 \mathbb{R}^2 2z = f(x,y)F(x,y,z) = 0 \mathbb{R}^3 level Curve3w = f(x,y,z)F(x,y,z,w) = 0 \mathbb{R}^4 level Surface

Example

Find the domain and range of the function $f(x, y, z) = \ln(16 - 4x^2 - 4y^2 - z^2)$.

Characterize the level surfaces of the function $f(x, y, z) = \ln(16 - 4x^2 - 4y^2 - z^2).$

$$\frac{|b-4x^{2}-4y^{2}-z^{2}>0}{2(x_{1}|z_{2}|+x^{2}-4y^{2}-z^{2}<163)}$$
Range (- ∞ , $\ln 16$]

$$\lim_{x \to 0^{-1}} \ln x = -60$$

Ĩ.

 $\begin{array}{c} k=\ln | b \\ (n (16 - 4x^2 - 4y^2 - z^2) = \ln | b \\ y - 4x^2 - 4y^2 - z^2 = y \\ 4x^2 + 4y^2 + z^2 = 0 \quad \text{point at the origin} \\ \hline \frac{k < \ln | b }{\ln (16 - 4x^2 - 4y^2 - z^2) = | <} \\ 16 - 4x^2 - 4y^2 - z^2 = e^k \\ 16 - e^k = 4x^2 + 4y^2 + z^2 \Rightarrow \text{ellipsoid} \\ \hline \infty \\ > 0 \end{array}$

LECTURE 11: Limits and Continuity (9/23/24)

- continuity indicates
 - defined at x = a
 - limit exists at x = a
 - limit = value at x = a

Limits

Information

Intuitively, $\lim_{(x,y)\to(a,b)} f(x,y) = L$ means that as the point (x,y) gets very close to (a,b), then f(x,y) gets very close to L.

In this case, the point (a, b) lies in a plane and there exists an infinite many paths to approach this point. How can we test them all?

 if 2 paths to the point are equal, it does not mean the limit exists in 3D

Limits

Example and Note

Theorem (Limit Laws)

Assume that $\lim_{(x,y)\to(a,b)} f(x,y) = \underline{L}$ and $\lim_{(x,y)\to(a,b)} g(x,y) = \underline{M}$, and let c be a constant. Then

1. $\lim_{(x,y)\to(a,b)} c = C$

2.
$$\lim_{(x,y)\to(a,b)} x = \mathbf{O}$$
 and $\lim_{(x,y)\to(a,b)} y = \mathbf{O}$

3.
$$\lim_{(x,y)\to(a,b)} [f(x,y)\pm g(x,y)] = \bigsqcup_{k=1}^{k} + \mathbf{M}$$

4.
$$\lim_{(x,y)\to(a,b)} [cf(x,y)] = C \$$

5.
$$\lim_{(x,y)\to(a,b)} [f(x,y)g(x,y)] = \bigsqcup_{n \to \infty} M$$

6.
$$\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M} \qquad \text{for } M \neq 0$$

7.
$$\lim_{(x,y)\to(a,b)} [f(x,y)]^n = L^n \qquad \text{for an integer } n >$$

8.
$$\lim_{(x,y)\to(a,b)} \sqrt[n]{f(x,y)} = \frac{L}{n} \qquad \text{for an integer } n > 0$$

(assume $L > 0$ if n is even)

Continuity

Definition

A function f(x, y) is continuous at (a, b) if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$

We say f is continuous on D if f is continuous at every point (a, b) in D.

 \mathbb{A}

1. Using the Limit Laws, we can prove that all polynomials are continuous on \mathbb{R}^2 and all rational functions are continuous on their domains. So, we can use **direct substitution** to find the limit:

$$\lim_{(x,y)\to(2,-1)} (x^2 - 4xy + 3y^2 - 1) =$$

= $2^2 - 4(2)(-1) + 3(-1)^2 - 1$
= 14

2. The basic properties of continuous functions of a single variable carry over to multivariable functions; that is the sum, difference, product, quotient, and composition of continuous functions are continuous.

For example,
$$\lim_{(x,y)\to(2,-1)} \frac{\sqrt{2x+3y}}{4x-y} = \frac{\sqrt{2(2)+3(-1)}}{4(2)-(-1)} = \frac{1}{9}$$

Continuity

= 14

Notes

 \mathbb{P}

1. Using the Limit Laws, we can prove that all polynomials are continuous on \mathbb{R}^2 and all rational functions are continuous on their domains. So, we can use direct substitution to find the limit: $\lim_{(x,y)\to(2,-1)} \left(x^2 - 4xy + 3y^2 - 1\right) =$

 $= 2^{2} - 4(2)(-1) + 3(-1)^{2} - 1$

2. The basic properties of continuous functions of a single variable carry over to multivariable functions; that is the sum, difference, product, quotient, and composition of continuous functions are continuous.

For example,
$$\lim_{(x,y)\to(2,-1)} \frac{\sqrt{2x+3y}}{4x-y} = \frac{\sqrt{2(2)+3(-1)}}{4(2)-(-1)} = \frac{1}{9}$$

Continuity

Examples

Discuss the continuity of f(x, y) = In(x + y).

Continuity

Examples

$$f(x,y) = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$\lim_{\substack{(x,y) \Rightarrow (0,0) \\ (x,y) \Rightarrow (0,0) \\ (x,y) \Rightarrow (0,0) \\ = \\ (x,y) \Rightarrow (0,0) \\ = \\ (x,y) \Rightarrow (0,0) \\ = \\ (x,y) \Rightarrow (0,0) \\ (x^2 - y^2) (x^2 + y^2) \\ = \\ (x,y) \Rightarrow (0,0) \\ (x^2 - y^2) \\ (x^2 + y^2) \\ (x^2$$

$$g(x, y) = \begin{cases} \frac{x^4 - y^4}{x^2 + y^2} & (x, y) \neq (0, 0) \\ (1) & (x, y) = (0, 0) \end{cases}$$

$$[im \quad g(x_1) = 1 = g(0, 0)$$

$$(x_1) \neq (0, 0) \\ \lim & \frac{x^4 - y^4}{x^2 + y^2} = 0 \neq 1$$

$$\lim_{x_1 \to y} \frac{x^4 - y^4}{x_1 + y^2} = 0 \neq 1$$

Continuous everywhere except the origin

LECTURE 12: Partial Derivatives (9/25/24)

Find the partial derivatives of f:

1.
$$f(x,y) = y \sin(x^2 + xy + y^2)$$

 $f_x = y \cos(x^2 + xy + y^2)(2x + y)$
 $f_y = 1 \sin(x^2 + xy + y^2) + y \cos(x^2 + xy + y^2)(x + 2y)$
 $f_z = -e^{2x} \cos(z^2) + e^{3y} \sin(2z)$
 $f_y = 3e^{3y} \sin(2z)$
 $f_y = 3e^{3y} \sin(2z)$
 $f_z = -e^{2x} \sin(z^2)(2z) + e^{3y} \cos(2z)(2z)$

Partial Derivatives

Examples

Find the slope of the tangent line to the curve of intersection of the surface $z = \sqrt{36 - 9x^2 - 4y^2}$ and the plane x = 1 at the point $(1, -2, \sqrt{11})$. $\frac{\partial 2}{\partial y} = \frac{1}{2} (36 - 9x^2 - 4y^2)^{-\frac{1}{2}} (-8y)$ $= \frac{-4y}{\sqrt{36 - 9x^2 - 4y^2}}$ $\frac{\partial^2}{\partial y} = \frac{-4y}{\sqrt{36 - 9x^2 - 4y^2}} = \frac{8}{\sqrt{11}}$

Find
$$\frac{\partial z}{\partial x}$$
 if $yz - \ln(z) = x^2 + y^2$.
 $\gamma \frac{\partial z}{\partial x} - \frac{1}{z} \frac{\partial}{\partial x} = 2x$
 $\frac{\partial z}{\partial x} (\gamma - \frac{1}{z}) = \frac{2x}{\gamma - \frac{1}{z}} \cdot z$
 $\frac{\partial z}{\gamma - \frac{1}{z}} + \frac{\gamma - \frac{1}{z}}{\gamma - \frac{1}{z}} \cdot z$
 $\frac{\partial z}{\partial x} = \frac{2xz}{\gamma - 1}$

(۲×)} = ۶

Higher Derivatives

f(x, y) has the following second partial derivatives. Mixed partial s

1. Differentiate twice w.r.t. *x*:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = (f_x)_x = f_{xx}$$

2. Differentiate twice w.r.t. *y*:

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = (f_y)_y = f_{yy}$$

3. Differentiate first w.r.t. *x* and then w.r.t. *y*:

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = (f_x)_y = f_{xy}$$

4. Differentiate first w.r.t. *y* and then w.r.t. *x*:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = (f_y)_x = f_{yx}$$