GenChem-2015	Name	P

The Chemistry of Compounds: What happens to H_2O_2 over time? IDENTIFYING TYPES OF REACTIONS <u>AND</u> FINDING THE PERCENTAGE COMPOSITION BY WEIGHT OF AN ELEMENT IN A COMPOUND

Background: (On the back sheet) Define Catalyst, Percent Composition Formula, Law of Conservation of Mass **Procedure:**

- a. Place two 6-inch test tubes in small beaker. Place beaker on a balance. Record weight of beaker & test tubes in item 1 of table.
- b. Add a very small amount (½ in.) of manganese dioxide (MnO₂) to one of the test tubes. Weigh the beaker, test tubes, and manganese dioxide on the scale. Record the weight in item 2 of the table.
- c. Add 1 inch of a 3% solution of hydrogen peroxide (H₂O₂) to the other test tube. Weigh the beaker, test tubes, manganese dioxide, and hydrogen peroxide on the scale. Record the weight in item 3 of the data table.
- d. Pour the hydrogen peroxide into the test tube containing the manganese dioxide. Place the emptied test tube back in the beaker.
- e. After about 30 seconds, hold a glowing splint near the mouth of the test tube containing the hydrogen peroxide and manganese dioxide. 1. Explain what happens to the glowing splint:

2.	What gas	is at the mouth	of the test tube?	Why	?

- f. After the bubbling has stopped, wait 1 minute and then weigh the beaker, test tubes, & contents. Record weight in item 5 of table.
- g. From the table, determine the weight lost during the decomposition of the H_2O_2 . This equals weight of the oxygen in H_2O_2 . (In this reaction, O_2 is NOT released from the manganese dioOXIDE. The manganese dioxide is a *catalyst*; it merely accelerates the release of the oxygen from the hydrogen peroxide.)

#	Items	Measurement	Unit
1	Weight of beaker and test tubes		
2	Weight of beaker, test tubes, and manganese dioxide		
3	Weight of <u>beaker, test tubes</u> , manganese dioxide, & H ₂ O ₂		
4	Calculate weight of H ₂ O ₂ (item 3 minus item 2)		
5	Weight of beaker, test tubes, & contents after the reaction		
6	Calculate weight of O ₂ released during reaction (item 3 minus item 5)		

h.	From tl	ne results	of this	experiment.	find the	percentage of ox	xvgen in H ₂ O ₂ , b	y weight, as follows:
----	---------	------------	---------	-------------	----------	------------------	--	-----------------------

Oxygen (in percent) = weight of oxygen released x 100 = weight of hydrogen peroxide

WRITE EQUATION & Circle Answer:

- 3. Suppose you were to repeat this experiment several times. Would you expect to get the same value for the % of O₂? _____Explain.
 - 4. Write the chemical statement for the reaction in the lab:
 - 5. Reactants: Products:
 - 6. Write the appropriate <u>chemical word equation</u> for the reaction in the lab:
 - 7. Write the chemical equation for the reaction in the lab: (use appropriate symbols, see pg. 179)
 - 8. What type of reaction occurred in this lab? (see pgs 187-195) **AND EXPLAIN WHY** this is your answer.

Combination	Decomposition	Single-Replacement	Double-Replacement	Combustion
-------------	---------------	--------------------	--------------------	------------

WHY?