
Tab 1

Playful Plugins Dev Guide​
by. Furimanejo

This is a guide on developing plugins using PP Script, the event
detection library from Playful Plugins. The library source code
can be found here

Summary Of Detection Methods
Computer Vision

Consists of analysing a live screen capture of the user’s screen
to detect or measure relevant visual elements, like icons,
health bars or text. A good approach for games with
anti-cheating software because it does not require modifying
game files or touching the game’s process in any way

Process Memory Reading

consists of analysing the in-ram memory of a computer process to
acquire relevant data. Not to be used in games with
anti-cheating software. Also not recommended to be used in games
that are frequently updated because changes in the game’s code
very often require redesigning the detection system

HTTP

Consist of sending or receiving HTTP requests to acquire
relevant data, for example, getting game events from League of
Legends through its live client data API

https://github.com/Furimanejo/PP-Script

Creating A Plugin
A plugin is a package (a folder or a .zip file) that contains at
least a metadata.yaml file and a python script file. The package
may also contain other files or folders if required by specific
detection methods (a “templates” folder with image files is a
common case).

I highly recommend having a plugin package by your side while
reading this doc so you can observe how things look like in an
actual plugin. Example: Peggle Plugin

OBS: names marked with this color represent important fields,
files or API functions. They are case-sensitive, using the wrong
name will break things

https://furimanejo.itch.io/pp-peggle-deluxe?password=pp

Metadata

A YAML file, named metadata.yaml, that contains:

-​ name (str): The name of the plugin
-​ author (str, optional): The name of plugin’s author
-​ version (str, optional): The version number of the plugin
-​ script (str): The path of the python script with the

plugin’s logic, relative to the package folder. Ex:
“plugin.py”

-​ req_lib_version: (int, optional) The minimum library
version required to run the plugin. Defaults to 0, a
version from before requirement checks existed, in PP
v1.99.2

Python Script

A python script (.py file), referenced in the metadata.yaml
file, that contains the plugin’s logic. The 2 main parts of a
plugin script are:

-​ a call to the init function
-​ the definition of the update function

The init function should be called once on the global scope of
the plugin script taking as parameter a dictionary with relevant
data to initialize the plugin. For example, on a computer vision
plugin this dictionary would have a cv key with a dictionary
value defining regions, templates, etc. Fields required by
specific detection methods will be documented on their
respective sections. Common fields on an init call are:

-​ description (str, optional): A description of the plugin,
shows up in the plugin’s tab. Ex: “This is a plugin for the
game Powerwash Simulator”

-​ config_file_name (str, optional): The name of the file,
without the extension, the plugin’s configs will be saved
to. Ex: “powerwash_sim”

-​ target_window (str, optional): A regex to match the title
of the plugin’s target window and get its rect and focus.
Ex: r"^PowerWash Simulator$"

-​ events (dict, optional): A dictionary defining what events
the plugin can raise. Keys are the event names (str).
Values are dictionaries with the fields:

-​ description (str, optional):
-​ scale_amount (function, optional): WIP

The update method will be called internally once per detection
frame. This is where we use the detection methods and raise
events

If editing on an IDE, like VSCode, you can “import” the stub
file on the first line of the script file to enable
autocompletion for the PP methods (“import” in quotes cause the
import don’t actually happen in the usual python sense, the line
is ignored in runtime and the methods are injected into the
script’s globals post compilation)

Debug Folder

The execution of plugins might create a debug folder to save
relevant files (for development or debug purposes), it can be
found at App Data Folder > Debug > Name Of The Plugin

Executing a plugin deletes everything on its respective debug
folder, be careful to not lose data that way.

Raising Events

To raise an event call the method raise_event from inside the
update function passing as argument a dictionary with the
following fields:

-​ type (str, optional): The name of the event you are
raising, as defined in the init data. Most output modules
will ignore events without a type, the exception being the
overlay module that will still show a region and label of
an event without type, good for debug purposes

-​ id (str, optional): Giving an event an id makes it override
or extend previous events with that same id, good for
“ongoing” events. Events with different ids stack. Defaults
to a random UUID4

-​ amount (int or float, optional): Defaults to 1. Some events
have an amount associated with them that can be used to
scale the effect of the event, like the amplitude of
patterns. Example:

-​ region (str, optional):
-​ label (str, optional):

Computer Vision
Computer vision is a set of functions to acquire information
from images or videos. In the case of Playful Plugins, the video
is a live capture of an application’s window or one of the
user’s monitors

To utilize computer vision methods you need to add the cv field
to the init data, cv being a dictionary with the following
fields:

-​ regions (dict): A dictionary that defines the regions of
interest. Keys are the names of the regions (str). Values
are dictionaries with the following fields:

-​ rect (dict): The position and size of the region
within the capture area. Require x and y values, size
can be given with w and h (width and height), or with
l and b (left and bottom). Example: {"x": 163, "y":
41, "w": 600, "h": 11}

-​ label_position (str, optional): Used by the overlay to
position a label on the region. Can be “top”, “left”,
“bottom”, or “right”. When None the label is
positioned centered inside the region

-​ templates (dict, optional): A dictionary of templates to be
used on template matching operations. Keys are the names of
the templates (str), values are dicts with:

-​ file (str): The path to the image file
-​ threshold (float): Value between 0.0 and 1.0

-​ scaling_method (function or tuple, optional): A method that
defines how regions and templates should be scaled based on
the capture’s dimensions. It takes the arguments (x, y, w,
h, rw, rh), where x,y,w,h are the rect of the region or
template, and rw,rh are the width and height of the
detected capture (usually the resolution of a window)...

Capture

Before utilizing any of the CV detection methods you must call
the capture method to acquire an image to operate on:

-​ regions (tuple[str]): A tuple of the names of the regions
you want to capture. If groups of regions are too far apart
(for example: some regions on the bottom left and some
regions on the top right) it might be more performant to
execute 2 different captures, one for each group, than a
single big capture that bounds all regions

-​ file (str, optional): The path of a file you want to load
instead of capturing a window or monitor (for development
or debug purposes). Must be inside the plugin package or
folder

-​ debug (bool): A flag that causes the captured image to be
saved to a debug folder when set to True. See Debug Folder

The capture method is not guaranteed to work (for example, if
the target app was not found) so you must also check the return
of the capture method before calling any detection methods

Template Matching

Template matching is a technique that consists of “scanning” a
target region of an image comparing it to a template image. See
this for more info on the theory behind the technique. Useful to
detect events with clear on-screen indicators, for example,
getting eliminations in Overwatch 2

Elimination popups in Overwatch 2:

Elimination template:

The main result of this operation is a number, between 0 and 1,
that represents the best match between the template and the
region, 1 being a perfect match. That result is then compared to
a threshold value associated with the template, if the result is
equal or bigger than the threshold the match is said to be
positive, that is, the template image was found within the
region. In real applications of this technique the results are
rarely equal to 1 (a perfect match), so it’s the developers job
to find a good enough threshold value to avoid false positive
and or false negative detections

It’s also good to note that this operation might be performance
intensive if the region is too big compared to the template

To perform a template matching operation call the function
match_template with the following arguments:

-​ template (str): The name of the template
-​ region (str): The name of the region

https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html

-​ filter (function, optional): An image processing function
to be applied to the template and the region before the
template matching happens

-​ div (tuple, optional): A tuple of 4 float values between 0
and 1 that allows the operation to happen in a subdivision
of the specified region, that represent, in percentages,
the starting X, ending X, starting Y and end Y values.
Defaults to (0,1,0,1) which equates to the whole region

-​ debug (bool, optional): Cause images relevant to the
operation, like the template and region, to be saved to the
respective debug folder

Region Fill Ratio

Consists in counting how many pixels within a region fall within
a specified range of colors. Requires a color filter that
results in a binary image. Useful to, for example, measure how
full a health bar is

Health bar UI in Helldivers 2:

Filters

An image is composed of pixels, each pixel containing 1 or more
values representing its color. The most common encoding for that
data is the RGB color space, but depending on the application
other color spaces might be useful, for example, grayscale or
HSV.

In the HSV color space colors are represented by 3 values: Hue,
Saturation and Value.

This is useful, for example, to filter colors of the same Hue,
regardless of their saturation. As an example we can look at
filtering the blue color from the following bar (stamina bar in
Elden Ring Nightreign):

Here we call the get_region_fill_ratio method with the following
filter function and debug = True, then we separate the channels
of the resulting file to obtain the individual Hue, Saturation
and Value channels:

Then, with the color picker tool and focusing on the relevant
part of the region we want to filter for, we find that the Value
ranges from 50 to 255, Saturation ranges from 0 to 180 and
finally, the most important channel, Hue ranges from 50 to 100,
representing the green hue of the bar. By passing the hsv image
and these values to the in_range function we can now filter for
the bar inside the region. Tip: when creating a filter be sure
to give the ranges a little wiggle room to account for changes
in lightning and what not, for example, if analyzing a channel
you find its lowest value to be 58, consider round it down to 50
when creating the filter.

Process Memory Reading
To read a process’ memory we first need the name of the process,
for example, VampireSurvivors.exe, then we need to find the
relevant static pointers that point to the variables we want to
read

A static pointer consists of a module name, like
GameAssembly.dll, a list of offsets, like [0x03F88358, 0x138,
0x40, 0x58, 0x68] and also the type of variable we expect to
read from that pointer (bool/int/float)

Finding these values can be done using a program called Cheat
Engine. Here’s an example of what the process looks like. You
might also find static pointers in “cheat tables” posted online

DISCLAIMER: Playful Plugins only reads values (contrary to cheat
programs that would change values to give players advantages).
That said merely touching a game's process memory can trigger
hacking accusations or detections, even if we're not changing
values, so never use this approach with games that have
anti-cheat software

https://www.youtube.com/watch?v=bG9wR2ufOxc

HTTP Requests
Plugins can detect events through HTTP requests, by sending GET
requests to a server or receiving POST requests as a server, all
in the localhost address. To do so add the field http to the
init data, a dictionary with the following fields:

-​ port (int): The port on the localhost through which the
requests will happen

-​ handle_content (function, optional): Reference to a
function that receives 1 argument (content). When this
field is present the module will open a server, listen to
incoming POST requests and pass the content of the requests
to the handle_content function as they happen. An usual way
to use this function is to store the received content in a
global variable to be used later in the update function

	Tab 1
	Playful Plugins Dev Guide​by. Furimanejo
	Summary Of Detection Methods
	Computer Vision
	Process Memory Reading
	HTTP

	Creating A Plugin
	
	Metadata
	
	Python Script
	Debug Folder
	
	Raising Events

	
	Computer Vision
	
	Capture
	
	Template Matching
	
	Region Fill Ratio
	
	Filters

	
	Process Memory Reading
	
	HTTP Requests

