
Composited Worklet Animations –
Updating Local Time on Main Thread

The Problem
The current approach for updating local time on the main thread is as follows:

● Every frame the current time is updated on the main thread, “peek” request is made to
the worklet.

● The worklet returns the last local time produced based on the current time supplied by
the compositor thread.

● The local time is assigned to the keyframe effect of the main thread.

The problems with this approach are:
● Since ticking is not synchronized between the main and compositor threads, the local

time returned by the worklet might not have been produced for the latest main thread
current time. As a result, the local time on the main thread does not correspond to the
latest current time.

● Scroll-linked animations may produce different dynamics of ticking between the main
and compositor threads. An extreme case of this is when a user scrolls rapidly up and
down to the same position, but the change is only detectable by the compositor and not
the main thread. As a result, the local time is never updated on the main thread.

Solution
Instead of polling local times on the main thread, use a push model, where local times are
pushed from the compositor to main thread for each BeginMainFrame. Similar approach is used
to synchronize scroll deltas from the compositor to main thread.

Note, that another mechanism is implemented to sync animation events, which is posting a task
to main thread with the events generated on the compositor thread. This approach is too
expensive for local time updates because in most cases the sync is required for each frame.

Objective
The goals of the proposed design are:



1. Fix synchronizing worklet animation local times from the compositor to main thread.
2. Implementing unified animation updates path that will be used to synchronize animation

events and worklet animation local times from the compositor to main thread.

Design
New animation event of type WA_LOCAL_EFFECT_UPDATE will be introduced to encapsulate
local time update information.

Generating and Collecting Events on the Compositor
Thread
New member of cc:AnimationHost, animation_events_, will keep a collection of animation
events to be pushed to the main thread as part of next BeginMainFrame.

Existing Animation Events
The logic of generating existing animation events will not change with the exception that the
events will be added to animation_events_ collection and no task posted to the main thread.

Local Time Updates Events
cc:WorkletAnimation will keep the most recent local time to be synced to the main thread.

Sending Animation Events from Compositor to Main
Thread
Animation events will be included into the begin main frame arguments that are provided from
the compositor to main thread as part of BeginMainFrame call:
cc: BeginMainFrameAndCommitState::mutator_events.

mutator_events will be populated from cc:AnimationHost::animation_events_ and worklet
animations local times. Upon populating the mutator_events, the sources of these events will be
emptied to prevent from sending duplications.

Processing Events on the Main Thread
Existing mechanism of AnimationHost::SetAnimationEvents will be expanded to propagate the
events to their listeners. In case of WA_LOCAL_EFFECT_UPDATE event, the listener will be
blink:WorkletAnimation. The callback will be similar to WorkletAnimation::SetOutputState, where
the local_times_ is updated with the new value. The local effect will be updated during normal
Update flow.



Implementation Details

The implementation can be achieved in 2 stages:
1. Introduce a new AnimationEvent of TIME_UPDATE type and include this event as part of

the existing sync mechanism (e.g. post task to main thread).
2. Introduce Begin Main Frame synchronization path and move all animation events to that

path.

Prototype:
https://chromium-review.googlesource.com/c/chromium/src/+/1620933

Alternative Solutions
1. Enhance existing peek solution to track local time updates on main and worklet

animation threads. However this makes the current solution complicated and defeats the
purpose of selecting “peek optimization” solution at the first place for its simplicity.

2. Keep separate mechanisms for syncing animation events, which is having posting tasks
for the existing animation events and local time updates included into the begin main
frame arguments. This is the safest solution since it doesn’t introduce risk of breaking
the existing functionality, however in the long term it requires maintaining multiple
solutions for similar asks.

3. Reuse the existing posting updates mechanism for local times updates. This solution is
not optimal since it may send multiple events per single main frame and introduces
unnecessary overhead of posting a task.

https://chromium-review.googlesource.com/c/chromium/src/+/1620933
https://chromium-review.googlesource.com/c/chromium/src/+/1620933

