
Constexpr allocation support
New operations required:

●​ For allocate: allocate an object of type T[N], start the lifetime of the array object,
do not start the lifetime of any of the contained T objects

●​ For deallocate: deallocate an object allocated by allocate
●​ For construct / construct_at: given a pointer to a T allocated by allocate,

construct an object of type T in that storage

Survey of existing library implementations

libc++
std::allocator<T> calls __builtin_operator_new or __builtin_operator_delete.
These Clang builtins are identical to calling the corresponding ::operator new or
::operator delete functions, except that they permit allocation optimization.

libstdc++
std::allocator<T>'s actual implementation is provided by __allocator_base, which is
determined at configuration time and picks one of various allocator implementations shipped
with libstdc++. Commonly-used is new_allocator, which implements allocate and
deallocate in terms of ::operator new and ::operator delete; other options include
malloc_allocator (calling malloc and free), mt_allocator (which is a thread-caching
pool allocator), and so on.

MSVC STL
std::allocator<T> is implemented in terms of ::operator new and ::operator
delete. One wrinkle: large allocations with low alignment requirements are manually
realigned by overallocating and inserting a cookie.

Exposing functionality to the library -- alternatives

Option 1: add a suite of builtins to be used by
std::allocator<T>

Idea: add a set of builtins that perform the three new operations, such as:

T *__builtin_allocate(typename T, size_t N)

Allocate an array T[N] and start its lifetime, do not start the lifetime of any array
elements.

void __builtin_deallocate(T *p)

Deallocate an array allocated by __builtin_allocate. Do not run any destructors.

void __builtin_construct(T *p, …)

Equivalent to new(p) T(args).

Pro: conceptually simple interface, one-to-one mapping to necessary operations
Con: substantial frontend complexity, especially for __builtin_construct, but also for
__builtin_allocate (builtins taking a type are complex, at least for Clang).
Con: need to use is_constant_evaluated in allocator:

constexpr T *allocator<T>::allocate(size_t n) {

 if (std::is_constant_evaluated()) return __builtin_allocate(T, n);

 // whatever you would have done normally

}

Note that libstdc++ will likely want to do this regardless, and then dispatch to
__allocator_base to perform the runtime allocation.

Option 2: use new-expressions and delete-expressions with
some kind of modifier
Idea: add new language syntax to represent the allocation and deletion of an array
separately from its array elements, such as:

new T[N] {__uninit_array__}

Allocate an array T[N] and start its lifetime, do not start the lifetime of any array
elements. (__uninit_array__ would be a new keyword.)

delete[] __uninit_array__ p

Deallocate an array without running destructors for array elements.

new (p, __some_magic_tag__) T(...)

Construct a T object in-place. (__some_magic_tag__ would be defined by the library
and recognized by the compiler.)

Pro: general functionality that can be used unconditionally to implement std::allocator
Pro: provides an optimizable new/delete pair without the need for a compiler builtin such as
__builtin_operator_new
Con: adds non-localized complexity (new keywords) and magic tag that we would likely
expect to become redundant eventually (once we permit placement new in constant
expressions in general)

Option 3: allow additional expression forms to be evaluated
inside std::allocator<T> and std::allocator_traits<T>
members
Idea: no changes to standard library implementation. Instead, when the evaluator enters a
member of std::allocator<T> or std::allocator_traits<T> (or std::construct_at
or std::ranges::construct_at) permit constant evaluation of some additional expression
forms.

For libc++, we require the following:

●​ A call to __builtin_operator_new(size, …) can be evaluated.
●​ A call to __builtin_operator_delete(p, …) can be evaluated.
●​ A pointer returned by __builtin_operator_new can be cast from void* to T*.
●​ new (p) T(...) can be evaluated, where p points to an element of an array created

by __builtin_operator_new.

For libstdc++, we require the following:

●​ For new_allocator: as for libc++, but with ::operator new and ::operator
delete in place of the builtins.

●​ Will need to deal with other __allocator_base options somehow, perhaps by
always using new_allocator when is_constant_evaluated().

For MSVC STL:

●​ As for libc++, but with ::operator new and ::operator delete in place of the
builtins.

●​ Will need to disable "alignment boosting" code path for large allocations (eg, using
is_constant_evaluated).

Pro: directly implements the standard's rule:

For the purposes of determining whether an expression is a core constant
expression, the evaluation of a call to a member function of std::allocator<T> as
defined in allocator.members, where T is a literal type, does not disqualify the
expression from being a core constant expression, even if the actual evaluation of
such a call would otherwise fail the requirements for a core constant expression.

Pro: simple in frontend and in library implementation, at least for Clang + libc++, only
requires adding constexpr to the standard library implementation
Con: quite "magical" compared to explicit opt-in syntax, only works within the
specially-identified member functions, may need additional magic to prevent this from
applying within user-defined constructors invoked by allocator_traits<T>::construct
and user specializations of std::allocator_traits (and std::allocator?).

Proposal: option 3 (implemented in Clang)
Transitively within the evaluation of a call to a specified member function of
std::allocator<T>, the following are permitted in constant expressions:
​
__builtin_operator_new(size, …)​
::operator new(size, …)

Allocate an array T[size / sizeof(T)] and start its lifetime, do not start the
lifetime of any array elements. Arguments after size are ignored. Callable transitively
within allocate.

__builtin_operator_delete(p, …)​
::operator delete(p, …)

Deallocate an object allocated by one of the above allocation functions. Callable
transitively within deallocate.

static_cast<cv T*>(p)

Cast a pointer returned by __builtin_operator_new to its appropriate type. Usable
transitively within allocate.

Additionally, directly within any function defined in namespace std , the following is 1

permitted in constant expressions:

new (p) T(...)

Requires: p is the result of casting a pointer to an object of type T to void*.​

1 … and we should probably just permit this in constant expressions in general.

	Constexpr allocation support
	Survey of existing library implementations
	libc++
	libstdc++
	MSVC STL

	Exposing functionality to the library -- alternatives
	Option 1: add a suite of builtins to be used by std::allocator<T>
	Option 2: use new-expressions and delete-expressions with some kind of modifier
	Option 3: allow additional expression forms to be evaluated inside std::allocator<T> and std::allocator_traits<T> members

	Proposal: option 3 (implemented in Clang)

