
Spring 2024

[EC2202] Data Structures

Midterm: 1 pm, Tuesday, Apr. 16

INSTRUCTIONS
●​ Do not open your exam sheet until directed to do so, otherwise you would be

considered cheating.
●​ You have 1 hour and 50 minutes to complete the exam (8 problems; maximum

of 100 points).
●​ The exam is closed book, closed notes, closed computer, and closed calculator.
●​ Mark your answers on the exam sheet itself and be sure to write your answers

in the space (boxes) provided. We will not consider the answers given outside
the boxes (use other spaces for brainstorming).

POLICIES & CLARIFICATIONS
●​ If you need to use the restroom, bring your exam sheet to the back of the room.

Only one person is allowed at a time.
●​ You may use built-in Python functions that do not require import, such as min,

max, pow, len, and abs.
●​ For What Would Python Print (WWPP) problems, write the results that would

show up in the Colab environment.
●​ For coding problems, we will ignore minor grammar mistakes for evaluation

(focus on the logic and flow). Moreover, your code must be indented correctly.
●​ Use English for your answers and name.

Student ID Number Name

Q1. (16 points) What Would Python Print (WWPP)
For the code blocks given on the left, write what Python would print in the box on the right. For your answers,
include all the resulting print outputs in the correct sequential order. Assume that you are running the
code blocks in the Colab environment.

(a) (4 points)

func = lambda : print("I love GIST")​
print(func())​
func

(b) (4 points)

multi = lambda f: lambda x: f(f(f(x)))​
multi(lambda y: y + 1)(0)

(c) (4 points)

print(True and -1)​
print(print(3) or "")​
print(max or 0)

(d) (4 points)

nums = {7: 'G', 5: 'I', 10: 'S', 2: 'T'}​
print(nums.get('X', 0))​
print(sum(nums))​
del nums['X']

I love GIST
None
<function __main__.<lambda>()>

3

-1
3

<built-in function max>

0
24
KeyError

1

Q2. (10 points) Functions
(a) (5 points) Implement swipe, which prints the digits of argument n, one per line, first backward then
forward. The leftmost digit is printed only once. Do not use while or for or str; but use recursion.

def swipe(n):​
 """​
 >>> swipe(2837)​
 7​
 3​
 8​
 2​
 8​
 3​
 7​
 """

 if n < 10:​
 print(n)​
 else:​
 print(n % 10)​
 swipe(n // 10)​
 print(n % 10)

(b) (5 points) Implement the below function which returns the product of every other positive integer, starting
with n.

def skip_factorial(n):​
 """Return the product of positive integers n * (n - 2) * (n - 4) * ...​
​
 >>> skip_factorial(5) # 5 * 3 * 1​
 15​
 >>> skip_factorial(8) # 8 * 6 * 4 * 2​
 384​
 """

 if n <= 2:​
 return n​
 else:​
 return n * skip_factorial(n - 2)

2

Q3. (20 points) Vending Machine
Create a vending machine that only outputs a single product and provides change when needed. Implement a
class called VendingMachine that represents a vending machine for certain products. A VendingMachine
object returns strings describing its interactions. Remember to match exactly the strings in the doctests
including punctuation and spacing! Fill in the VendingMachine class, adding attributes and methods as
appropriate, such that its behavior matches the doctests. Each method is worth 5 points.

class VendingMachine:​
 """A vending machine that vends some product for some price.​
​
 >>> v = VendingMachine('candy', 10)​
 >>> v.vend()0​
 'Nothing left to vend. Please restock.'​
 >>> v.add_funds(15)​
 'Nothing left to vend. Please restock. Here is your $15.'​
 >>> v.restock(2)​
 'Current candy stock: 2'​
 >>> v.vend()​
 'Please add $10 more funds.'​
 >>> v.add_funds(7)​
 'Current balance: $7'​
 >>> v.vend()​
 'Please add $3 more funds.'​
 >>> v.add_funds(5)​
 'Current balance: $12'​
 >>> v.vend()​
 'Here is your candy and $2 change.'​
 >>> v.add_funds(10)​
 'Current balance: $10'​
 >>> v.vend()​
 'Here is your candy.'​
 >>> v.add_funds(15)​
 'Nothing left to vend. Please restock. Here is your $15.'​
​
 >>> w = VendingMachine('soda', 2)​
 >>> w.restock(3)​
 'Current soda stock: 3'​
 >>> w.restock(3)​
 'Current soda stock: 6'​
 >>> w.add_funds(2)​
 'Current balance: $2'​
 >>> w.vend()​
 'Here is your soda.'​
 """​
​
 def __init__(self, product, price):

 self.product = product​
 self.price = price​
 self.stock = 0​

3

 self.balance = 0

​
 def restock(self, n):

 self.stock += n​
 return f'Current {self.product} stock: {self.stock}'

​
 def add_funds(self, n):

 if self.stock == 0:​
 return f'Nothing left to vend. Please restock. Here is your ${n}.'​
 # Alternatively, we could have:​
 # return self.vend() + f' Here is your ${n}.'​
 self.balance += n​
 return f'Current balance: ${self.balance}'

​
 def vend(self):

 if self.stock == 0:​
 return 'Nothing left to vend. Please restock.'​
 difference =self.price - self.balance​
 if difference > 0:​
 return f'Please add ${difference} more funds.'​
 message = f'Here is your {self.product}'​
 if difference != 0:​
 message += f' and ${-difference} change'​
 self.balance = 0​
 self.stock -= 1​
 return message + '.'

4

Q4. (5 points) Algorithm Analysis
Evaluate the runtime bound in Θ for the function below.

def runtime_func(n):​
 k = 0​
 i = 1​
 while i < n * n * n:​
 i *= 2​
 k += 1​
 return k

 Θ(𝑙𝑜𝑔 𝑛)

Q5. (12 points) Binary Search
Given a non-negative integer n, compute and return the square root of n. The decimal digits are truncated, and
only the integer part of the result is returned. Do not use recursion, but iteration. The expected runtime
complexity is O(log n). You are not allowed to use any built-in exponent function or operator.

def sqrt_custom(n):​
 '''​
 >>> sqrt_custom(4)​
 2​
 >>> sqrt_custom(8)​
 2​
 >>> sqrt_custom(16)​
 4​
 >>> sqrt_custom(24)​
 4​
 '''

 if x == 0: return 0​
 if x == 1: return 1​
​
 low, high = 0, x​
​
 # binary search​
 while low <= high:​
 mid = low + (high - low) // 2​
​
 if mid ** 2 > x: # if mid * mid > x:​
 high = mid - 1​
 elif mid ** 2 < x:​
 low = mid + 1​
 else: # mid ** 2 == x​
 return mid​
 return high

5

Q6. (10 points) Matrix Rotation
Given an N x N 2D matrix mat representing an image, rotate_matrix rotates the image by 90 degrees
(anti-clockwise). You need to do this in place. Note that you should not create an additional array.

Function to print the matrix​
def print_matrix(mat, size):​
 for i in range(0, size):​
 for j in range(0, size):​
 print (mat[i][j], end = ' ')​
 print ("")​
​
You just need to implement this function​
def rotate_matrix(mat, size):​
 '''​
 >>> mat = [[1, 2, 3],​
 ... [4, 5, 6],​
 ... [7, 8, 9]]​
 >>> rotate_matrix(mat, 3)​
 >>> print_matrix(mat, 3)​
 3 6 9​
 2 5 8​
 1 4 7​
 >>> mat = [[1, 2],​
 ... [4, 5]]​
 >>> rotate_matrix(mat, 2)​
 >>> print_matrix(mat, 2)​
 2 5​
 1 4

 '''

 for x in range(0, int(size / 2)): ​
 # Consider elements in group of 4 in current square​
 for y in range(x, size-x-1): ​
 # store current cell in temp variable​
 temp = mat[x][y]​
​
 # move values from right to top​
 mat[x][y] = mat[y][size-1-x]​
​
 # move values from bottom to right​
 mat[y][size-1-x] = mat[size-1-x][size-1-y]​
​
 # move values from left to bottom​
 mat[size-1-x][size-1-y] = mat[size-1-y][x]​
​
 # assign temp to left​
 mat[size-1-y][x] = temp

6

Q7. (10 points) Reverse Polish Notation with Unary Operators
Implement the function eval_rpn_unary that evaluates Reverse Polish notation, also referred to as Polish
postfix notation. Notice that the function supports unary operators such as -(1+2), i.e., [“1”, “2”, “+”, “-”].
Moreover, remember that there are only two types of unary operators: + and -. You also need to handle
exceptional cases properly.

def eval_rpn_unary(tokens):​
 '''​
 >>> eval_rpn_unary(["3", "1", "+", "4", "*"]) # (3 + 1) * 4 = 16​
 16​
 >>> eval_rpn_unary(["2", "1", "+", "3", "*"]) # ((2 + 1) * 3) = 9​
 9​
 >>> eval_rpn_unary(["4", "13", "5", "/", "+"]) # (4 + (13 / 5)) = 6​
 6​
 >>> eval_rpn_unary(["1", "2", "+", "-"]) # -(1 + 2) = -3​
 -3​
 '''

 operations = {​
 "+": lambda a, b: a + b,​
 "-": lambda a, b: a - b,​
 "/": lambda a, b: int(a/b),​
 "*": lambda a, b: a * b​
 }​
 stack = []​
 for e in tokens:​
 if e in operations:​
 if len(stack) == 0:​
 raise Exception("No Numbers Found")​
 elif len(stack) == 1:​
 if e in ["+", "-"]:​
 if e == "-": stack.append(-stack.pop())

 else: stack.append(+stack.pop())​
 else:​
 raise Exception("Only Unary +/- Supported")​
 else:​
 n2 = stack.pop()​
 n1 = stack.pop()​
 stack.append(operations[e](n1, n2))​
 else:​
 stack.append(int(e))​
 return stack[-1]

7

Q8. (17 points) Queues with a Single Sentinel
Complete the implementation of the Queue class using a single sentinel. A sentinel is a dummy node that
does not contain meaningful items; the sentinel makes the implementation clean by removing the necessity of
checking exceptional cases. The Queue starts with a single sentinel and becomes circular after a few
enqueue operations (the last node of the Queue points back to the sentinel node). Correct implementation of
each method is worth 5 points except is_empty.

class Node:​
 def __init__(self, item, prev=None, next=None):​
 self.item = item​
 self.prev = prev​
 self.next = next​
​
class Queue:​
 '''​
 >>> q = Queue()​
 >>> q.is_empty()​
 True​
 >>> q.front()​
 'Q is empty!'​
 >>> q.enqueue(4)​
 >>> q.front()​
 4​
 >>> q.is_empty()​
 False​
 >>> q.enqueue(5)​
 >>> q.enqueue(6)​
 >>> q.enqueue(7)​
 >>> q.dequeue()​
 4​
 >>> q.front()​
 5​
 >>> print(q)​
 5 -> 6 -> 7​
 >>> q.dequeue()​
 5​
 >>> q.dequeue()​
 6​
 >>> q.dequeue()​
 7​
 >>> q.dequeue()​
 'Q is empty!'

 >>> q.is_empty()​
 True​
 '''​
 def __init__(self):​
 self.sentinel = Node(None)​
 self.sentinel.next = self.sentinel​
 self.sentinel.prev = self.sentinel​

8

 def __str__(self):

 result = []​
 temp = self.sentinel.next​
 while temp != self.sentinel:​
 result.append(str(temp.item))​
 temp = temp.next​
 return " -> ".join(result)

​
 def is_empty(self):

 return self.sentinel.next is self.sentinel

 def front(self):​
 if self.is_empty():​
 return "Q is empty!"​
 return self.sentinel.next.item​
​
 def dequeue(self):​
 if self.is_empty():​
 return "Q is empty!"

 item = self.sentinel.next.item​
 self.sentinel.next = self.sentinel.next.next​
 self.sentinel.next.next.prev = self.sentinel​
 return item

 ​
 def enqueue(self, x):

 temp = Node(x)​
 temp.prev = self.sentinel.prev​
 temp.next = self.sentinel​

 self.sentinel.prev.next = temp​
 self.sentinel.prev = temp

9

	Spring 2024
	[EC2202] Data Structures
	Midterm: 1 pm, Tuesday, Apr. 16
	INSTRUCTIONS
	POLICIES & CLARIFICATIONS
	Q1. (16 points) What Would Python Print (WWPP)
	
	Q2. (10 points) Functions
	
	Q3. (20 points) Vending Machine
	
	Q4. (5 points) Algorithm Analysis
	Q5. (12 points) Binary Search
	Q6. (10 points) Matrix Rotation
	Q7. (10 points) Reverse Polish Notation with Unary Operators
	
	Q8. (17 points) Queues with a Single Sentinel

