PolkaVote

This project marks the first steps toward real life applicable ZK use cases for the Polkadot
community. By leveraging the state of the art ZK tooling such Noir, ZK-SNARKS,HONKS and
Pederson Commitment, “PolkaVote” introduces an anonymous voting protocol to the Polkadot
eco-system for anonymous and decentralized governing.

The approach of the project is to extend the existing functionality of the Open Gov Voting
mechanism that exists in the Polkadot eco-system and introduce anonymity to it.

On the technical side, Noir was chosen with developer experience as a top priority. Unlike other
ZK technologies that require deep knowledge of mathematical circuit design, Noir provides a
Rust/Solidity-native environment and includes a compiler that automatically generates circuits.
This means developers never need to manually design circuits—everything happens under the
hood within a robust Noir development workflow.

How does it work?

The protocol is designed with a privacy first approach, leveraging ZK-SNARKS (HONKS) to
obscure the on-chain published votes.Voting evaluation leverages homomorphic property of the
Petersen Commitment to evaluate the final voting result in an oblivious way on top of the
ciphertext space.

Once the encrypted result of the aggregate votes is evaluated the protocol uses the ZK proof to
assert and leak only the data that it was designed to -- the aggregated voting result.

The solution does not anonymize voters identities but only their vote (Yay or Nay), such a setup
was selected for practical reasons.

At its core, the idea is to create a flexible, reusable and robust Zero Knowledge voting platform
on Polkadot for Polkadot.

Submission track name

1. Kusama Zk bounty
2. Main track Polkadot

Team and Project Information

Team name
CrackedDevZ

Team Members

1. Gil Henkin, gil7788@gmail.com
2. Armando Medina, Armsves@gmail.com
3. Zach Kornberg, zkorn1@icloud.com

Project Architecture

Project’s architecture comprises of several components:
1. Frontent
2. Backend
3. Solidity smart contracts
4. Noir circuits

Front End

The Front end responsible for the noir proof generation, and on chain communication, including
on chain verification. The frontend creates a pedersen commitment per voter where each
commitment is recorded to the chain state. Recording the commitment to state constrains the
off-chain server to ensure the integrity of the result. The circuit constrains the vote output to
match the summation of commitments created by each user, thus preventing voter starvation
(the server withholds certain user votes) and attempts to tamper with a given user’s vote.

Back End

The server is responsible to evaluate the total aggregate votes once the voting is done and
over. The server introduces a single point of centralization that can be eliminated by
incorporating solutions like MPC and Shamir Secret Sharing. As mentioned above, onchain
commitments create strong guarantees regarding the authenticity of the vote. Despite a single
point of failure, the server is only liable for liveness failures in the protocol. Moreover, given that
the plaintext is revealed offchain, we must currently trust that the server will not dox the users.

Solidity Smart Contracts

The solidity smart contracts are responsible for the on chain state management, on chain proof
verification and commitment binding. Yet another interesting functionality of the smart contract
system is the nullifier mechanism that accounts for and prevents replay attacks, similar to the
mechanism used in tornado cash to prevent double spends from a pool. The commitments
stored onchain anchors the privacy and security guarantees of the system.

Noir Circuits

The Noir circuits are responsible for proving the legitimacy of the vote under ZK assumptions
(hiding + binding) and performing additive homomorphisms over the set of commitments stored
in the chain state. This circuit generates the validity proof for the reported result and asserts the
summed commitments are equal to the result. The submission of the final result is done at the
end of the voting period.

Single Point of Centralization

As the protocol presented in the current iteration, there exists a single point of centralization that
defeats the purpose of a “fully private” solution. However it is usually the case where
Cryptographic protocols are implemented and developed for a relaxed setup first and improved
iteration by iteration. This hackathon marks the first milestone of the PolkaVote protocol. Check
out the following section for protocol improvements and enhancements :)

Implementation Details

Polkavote solution provides a transparent end to end solution with privacy as its first concern.
This section presents the flow of the application starting from voters' browser all the way through
generating a ZK proof with Noir circuits, to Solidity smart contracts ZK verification and vote
aggregation and eventually back to the voters browser as a plain final result of the voting.

As already was mentioned, the voting protocol starts with

1. Noir Proof Generation

The following code is responsible for Noir circuit generation, the generated circuit ensures the
validity of the vote value and the correctness of the ECDSA signature on message hash, which
includes - timestamp, proposal id, user id, user address and vote.

public
public
value:

SHA256 WORD LEN],

1 main(

y, is upvote, e hash, signature);

vote.public fv V nature, vote.message hash);

2. ZK Browser

The proof is generated on a chain leveraging the Barretenberg solution provided by
Aztec.

proposalld}, ${ac 55},%{userId}, ${is upvote

result = await getSignatureAndPublicKey(message, signMessageAsync);

, signatureBytes } = result;

public key
public key
is upvote,

message hash: me
signature:

{ witness]
setWitness([]
show(setlLogs,

3. On Chain State Management with Paseo

Paseo is used as a Solidity based blockchain to manage state. While the original plan was to
host all the smart contract systems on the Paseo chain, we ran (once again) into a contract limit
size - it was verified and approved by several mentors (including Tiago and Torsten). As an
unfortunate work around we had to bridge the gap of the technical capability and deploy the
smart contract system onto 2 different block chains - Paseo and Ethereum Sepolia.

4. Leveraging Additive Homomorphism of Pedersen Commitment for Oblivious
Evaluation On Chain
Pedersen commitments were specifically selected so certain computation could be performed
on chain without compromising voter privacy and security. Pedersen Commitments under ZK
provide an interesting combination of private commitments that are still flexible to support
evaluation on the ciphertext mainly because there is a homomorphic relation between the
committed and plain value; Homomorphism in a Nut Shell:

Formally, amap f: A — B preserves an operation y of arity &, defined on both A and B if

f(.!uf.ﬁl{als- “+ak:]} = #‘B(f{al)*.-"‘ﬁf{a‘k})?

for all elements a4, ..., ax in A.

In our case F is the Pedersen Commitment map and a’s are committed values.

5. Revealing The Final Result of a Bit Commitment

The last part of the protocol is the trickiest, in the solution that we provided today it requires a
single point of centralization - a web server that is able to compromise the privacy of all the
voters at the end of the vote, however with future research and development a solution with
Multi Party Computation (MPC) can be advised to eliminate the single point of centralization.

Implementation Challenges

Barretenberg backend
A. Barretenberg can compile to web assembly and thus the cryptographic primitives

it provides are callable from the browser. Aztec provides glue code for the
WASM module to be accessed by the javascript runtime public APIs on top of the
glue code for a better developer experience.

. While we were implementing the frontend, we were able to successfully initialize

Barretenberg; however, despite providing field elements to the pederson
commitment call and the blinding factor, the call to the method hangs
indefinitely. This can be any number of things.

A. One challenge we encountered while implementing the circuits was figuring out

how to do the homomorphic operations on the pedersen commitments. At first
| did not recognize that the output of the pedersen commitment is a point on the
curve. Given that the output is a curve point, it is straightforward to add two curve
points together where the group operation is addition.

. In the implementation we tried to pass in an array of field values for the

commitments; however, we could not cast Field to an EmbeddedCurvePoint. We
were able to go the other way -- changing the Field type to
EmbeddedCurvePoint. Thus, we had to find some way to convert the
commitments directly to curve points in order to pass the information successfully
to the verifier onchain.

Followup Milestones

The focal agenda of the following milestones strongly revolves around protocol resiliency,
privacy and decentralization. The first milestone focussed on a rather simplistic and relaxed
model of security, paving the technological way for a more complex and robust technical
implementation for the second milestone.

Deliverable 1

Problem Statement and Research propose a new cryptographic primitives that suit the needs
of the protocol

Deliverable 2

Commitment Scheme Implementation Implementation of the new candidate to the
commitment scheme variants that was proposed in the research phase

Deliverable 3

Off Chain Merkle Tree Implementation of a server that stores the voting commitments off chain
and leverages blockchain for integrity by posting Merkle Tree root on chain.

Open Suggestions for Enhancements and Future Integrations

1. Implement verifier on chain with Ink!

2. Contribution to the governing pallet in Github using ink!

3. Store the hash of a Merkle root on chain while maintaining the full Merkle Tree off chain
for efficient and lightweight gas usage and data integrity

4. Change commitment scheme to KZG commitment scheme to introduce efficient and

privacy preserving solution

Replace the centralize server with MPC to eliminate single point of centralization

Integration HyperBridge

Weight based model

Automatic treasury disbursement

® N O

	PolkaVote
	
	Submission track name
	1.​Kusama Zk bounty
	2.​Main track Polkadot
	Team and Project Information
	Team name
	Team Members

	Project Architecture
	Front End
	Back End
	Solidity Smart Contracts
	Noir Circuits
	Single Point of Centralization
	
	Implementation Details
	1.​Noir Proof Generation
	2.​ZK Browser
	The proof is generated on a chain leveraging the Barretenberg solution provided by Aztec.

	
	3.​On Chain State Management with Paseo

	Implementation Challenges

	
	Followup Milestones
	Deliverable 1
	Deliverable 2
	Deliverable 3
	
	Open Suggestions for Enhancements and Future Integrations

