

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY PATNA

Ashok Raj Path, PATNA 800 005 (Bihar), India

Phone No.: 0612 – 2372715, 2370419, 2370843, 2371929, 2371930, 2371715 Fax – 0612- 2670631 Website: www.nitp.ac.in

CSX4159: Virtual Reality

L-T-P-Cr: 3-0-0-3

Pre-requisites: Fundamental knowledge of Computer Graphics, Visual Perception from a Computer Graphics Perspective

Course Objectives.

- 1. Historical and modern overviews and perspectives on virtual reality.
- 2. Fundamentals of sensation, perception, and perceptual training.
- 3. The scientific, technical, and engineering aspects of virtual reality systems.
- 4. Evaluation of virtual reality from the lens of design.

Learning Outcomes.

Sl.	Outcome	Mapping to POs
No.		
1	Identify, examine, and develop software that reflects fundamental techniques for the design and deployment of VR experiences.	PO1, PO3
2	Describe how VR systems work.	PO1, PO3
3	Choose, develop, explain, and defend the use of particular designs for VR experiences.	PO1, PO4- PO7, PO12
4	Evaluate the benefits and drawbacks of specific VR techniques on the human body.	PO4, PO5
5	Identify and examine state-of-the-art VR design problems and solutions from the industry and academia.	PO3, PO4-PO7, PO12

Module I: Introduction- Course mechanics, Goals and VR definitions; Historical perspective; Birds-eye view (general); Birds-eye view (general); Birds-eye view (hardware); Birds-eye view (software); Birds-eye view (sensation and perception)

Lectures: 5

Module II: Geometry of Virtual Worlds- Geometric modeling, Transforming models, Matrix algebra and 2D rotations, 3D rotations and yaw, pitch, and roll; 3D rotations and yaw, pitch, and roll; Axis-angle representations; Quaternions; Converting and multiplying rotations, Converting and multiplying rotations; Homogeneous transforms; The chain of viewing transforms; Eye transforms; Eye transforms; Canonical view transform; Viewport transform; Viewport transform

Lectures: 6

Module III: Light and Optics- Three interpretations of light; Refraction; Simple lenses; Diopters; Imaging properties of lenses; Lens aberrations; Optical system of eyes **Lectures: 5**

Module IV: Visual Physiology- Photoreceptors; Sufficient resolution for VR; Light intensity; Eye movements; Eye movement issues for VR; Neuroscience of vision **Lectures: 5**

Module V: Visual Perception Depth perception; Depth perception; Motion perception; Frame rates and displays; Frame rates and displays

Lectures: 4

Module VI: Tracking Systems Overview; Orientation tracking; Tilt drift correction; Yaw drift correction; Tracking with a camera; Perspective n-point problem; Filtering; Lighthouse approach **Lectures: 5**

Module VII: Visual Rendering Visual Rendering-Overview; Visual Rendering-overview; Shading models; Rasterization; Pixel shading; VR-specific problems; Distortion shading; Post-rendering image warp

Lectures: 5

Module VIII: Audio Physics and physiology; Auditory perception; Auditory localization; Rendering; Spatialization and display; Combining other senses

Lectures: 5

Module IX: Interfaces

Interfaces -overview; Locomotion; Manipulation; System control; Social interaction; Evaluation of VR Systems

Lectures: 5

References

- 1. Grigore C. Burdea, and Philippe Coiffet, Virtual Reality Technology: Wiley Interscience publication; 2 edition, 2010.
- 2. George Mather, Foundations of Sensation and Perception: Psychology Press; 2 edition, 2009.
- 3. Peter Shirley, Michael Ashikhmin, and Steve Marschner, Fundamentals of Computer Graphics, A K Peters/CRC Press; 3 edition, 2009.