
Job Application Tracker - Security
By Alvaro Espinoza Merida, Bailey Voyles, Nick Andrew, Thomas Stone

Abstract

In our capstone project, our group created a job application
tracker. The primary purpose of this application was to help users
keep track of the applications that they had applied for and help
them automate the process of keeping track of their applications.
Since our group for this security class was already the same as the
group for our capstone project, we decided to pursue a project that
had us secure our application. This application was implemented using
Java Spring boot, ReactJS, Vite, and TailwindScss. On the security
side of our application, we first secured users’ passwords by making
sure they were encrypted, created JWT tokens for authenticating
users, and updated our backend so that users could only access
sensitive information with proper passwords and tokens, we then
implemented HTTPS into our application to secure data in transit, and
finally we ran our backend and frontend of our application through
security auditing tools to see current security vulnerabilities of
our application we used tools like OWASP dependency check, and
finally we attempted to fix these security vulnerabilities. This
report goes through this outlined process and talks about the number
of different processes and challenges we went through in implementing
security into a full-stack application.

Introduction & Problem Description

 In today's job market, job seekers often submit dozens of

applications, making it crucial to have a reliable system for
tracking these applications. Our Job Application Tracker was
developed to address this need, providing job hunters with a
centralized platform to manage their job application related emails.
As developers, we want our users to feel secure and protect their
sensitive personal and professional information. This is why we
implemented robust security measures including encrypted password
storage, JWT token authentication, and HTTPS protocols for secure
data transmission. Along with these security measures we utilized
security auditing tools like OWASP dependency check to ensure our
users are protected. Our journey has involved securing the front-end
and back-end, which were built using Java Spring Boot, React, Vite,
and TailwindCSS, while also addressing security challenges and
vulnerabilities along the way.

1

Technical Approach and Implementation

Spring Boot Security Features
​ One of the advantages of using Spring Boot for our application
is that it already has security features built in. This provided us
with a good foundation for the rest of our security implementations.
Spring boot offered many different protections that we didn't have to
implement ourselves:

-​ Protections against Cross-site request forgery attacks
through automatic token generation and validation

-​ Session management and handling cookies securely
-​ Protections against common web vulnerabilities including

XSS and SQL injections
-​ Automatic security headers configuration

​ These built in features allowed us to focus on implementing JWT
authentication and HTTPS, rather than building our the basic security
protections that spring boot provides.

Implementing Json Web Tokens(JWT)
​ The first step in adding security features to our full-stack
application was to ensure that user passwords were encrypted. To do
this, we restricted our API endpoints into two distinct controller
classes: one that handled logins and creating users and another that
made all other requests related to all other CRUD operations. By
doing this, we divided our API endpoints into two distinct sections.

After doing this, we updated the original process of creating
new users by making sure their passwords were encrypted and that the
UserService class’s register function encoded the password using a
BCryptPasswordEncode with a strength level of 12 to encode the
password. By doing so, we could ensure that all newly registered
users had an encrypted password. In terms of security, this was one
of the most important features to add, as storing plain text
passwords presents an extreme security vulnerability as users reuse
the same password on other websites.

After adding this new security feature, we created a JWT token
generation/authentication system. A Json web token or JWT is a Java
Script Object Notation type which is typically used by websites to
securely transfer information over the web between two parties ; in
this case we use it for communication between the client and server.
This type of token was used to authenticate users and authorize CRUD
operations. The way it worked was once the user logged into the
system the backend created a JWT Token in a special Java Class called
JWTService. This class generated a token for the user using a secret
key using the HmacSHA256 algorithm. Once the token was generated by
the class it was sent back to the client thanks to the AuthController

2

that handled all login requests and register api requests. When the
user authenticated, the token was then sent back to the backend
server whenever the user performed any CRUD operations. One of the
main API endpoints used by our application was an endpoint that
returned back to the user all the applications they had applied for;
with this newly implemented token authentication system in order for
this information to be returned properly to the frontend, the user id
and token would need to be authenticated. If the token was expired,
tampered with the backend would be able to detect this thanks to a
special function in the JWTService class called isTokenValid.

Implementing HTTPS:
​ The implementation of HTTPS in Java Spring Boot required less
code than the JWT, as it was built on top of the already implemented
code for the JWT. To implement HTTPS we just needed to add more
information to our backend’s configuration file about where the HTTPS
server was going to run and the certificate it was using. We also
needed to add another layer to our program’s security chain. The
security chain was just the different filter requests go through in
our program's structure to verify authentication. After implementing
HTTPs to the backend, we needed to make sure that our frontend was
also running on an HTTPs server and that the backend allowed traffic
from that origin to be allowed through.

Challenges

Challenges with JWT:
​ Thanks to the many libraries that were available with
SpringBoot, implementing this JWT token system was straightforward to
understand after much struggle in implementing these classes. The
biggest challenge in implementing all this code was understanding the
relationship between the different classes needed for security and
the connections to the already implemented API endpoints. For some of
us new to working with Java Spring Boot understanding the dependency
injection was also hard, but that was not so much an issue with
understanding the security implementation but more of an issue with
Java SpringBoot architecture.

Another issue that took a significant amount of time was
figuring out the updated classes and functions that needed to be used
for our newer spring security library that was being used. The
original tutorial that we followed for adding JWT Tokens, despite
being less than a year old, was deprecated. Hence, doing research
into using the proper functions and classes took some time.
​

3

Challenges with HTTPS:
​ The biggest issue we ran into getting HTTPS to work on a dev
environment was making sure we were learning to generate self-signed
certificates, adding them to our systems certificates, making sure
they were in the right format for spring-boot, and then repeating the
process on different operating systems. When we first started doing
research into generating self-signed certificates, we learned to
generate them using OpenSS:; however, for whatever reason, our
backend was not allowing us to use these certificates generated by
OpenSSL even when converted to the correct format needed for
spring-boot and our operating systems system certificates.

After much struggle with open SSL we switched over to using
mkcert. Mkcert certificates worked for Linux, Mac, and Windows; we
only needed to ensure they were in the correct format, so we used
Open SSL to do the conversions. We also used a special MKCert module
in the application's front end to generate a certificate in the front
end. After some struggle with some CORS policy issues and the
creation of a particular class for handling CORS between the frontend
and backend, we were able to get HTTPS running on our application.

Results and Evaluation

Dependency-Check Report Analysis: Critical and High Severity Issues

The Dependency-Check report identified several critical and
high-severity vulnerabilities in the scanned dependencies. These
vulnerabilities pose a significant risk to the security of the
application and should be addressed prior to the official launch of
our product to prevent potential exploitation. This report focuses on
the critical and high-severity issues discovered and provides an
overview of their nature, affected dependencies, and remediation
steps.

Critical Vulnerability: Apache Commons IO

The most critical vulnerability identified in the report is
associated with the Apache Commons IO library, specifically version
2.8.0. This vulnerability, tracked as CVE-2024-47554, involves a
weakness in the handling of input streams, potentially allowing an
attacker to manipulate file uploads or downloads. Exploitation of
this vulnerability could result in unauthorized file access or
modification, posing a severe threat to data integrity and
confidentiality. The recommended remediation for this issue is to

4

update the Apache Commons IO library to a secure version, such as
2.11.0 or later.

High-Severity Vulnerabilities

1.​ Spring Security Framework: CVE-2024-38821

The Spring Security Framework is a cornerstone of many
Java-based web applications, responsible for authentication and
authorization. A high-severity vulnerability, CVE-2024-38821,
was found in version 6.3.3 of the spring-security-web library.
This issue enables attackers to bypass security mechanisms
under specific conditions, which could lead to unauthorized
access to protected resources.
Remediation: Upgrade to the latest secure release as per the
vendor's advisory. Regularly review Spring Security
dependencies for known vulnerabilities.

2.​ Bouncy Castle Java Library: CVE-2024-34447

Bouncy Castle, a popular cryptographic library, is vulnerable
to a certificate validation flaw in version 1.71, tracked as
CVE-2024-34447. This vulnerability could allow attackers to
forge certificates or perform man-in-the-middle attacks,
undermining the security of encrypted communications.
Remediation: Update the dependency to Bouncy Castle version 1.78
or newer to ensure robust certificate validation processes.

3.​ Log4j 2.x: CVE-2024-39112

Another high-severity vulnerability affects versions of Log4j
2.x prior to 2.20.0, potentially allowing attackers to execute
remote code through improperly sanitized user input in logging
configurations. This vulnerability has serious implications for
server security and is often exploited to gain unauthorized
system access.
Remediation: Upgrade to Log4j 2.20.0 or later. Ensure proper
input validation in logging implementations as an additional
safeguard.

4.​ Jackson Databind: CVE-2024-39810

The Jackson Databind library, used for processing JSON data, is
vulnerable to deserialization attacks in version 2.14.1.

5

Tracked as CVE-2024-39810, this issue could enable attackers to
execute arbitrary code by injecting maliciously crafted data.
Remediation: Upgrade to version 2.15.0 or newer to address this
deserialization vulnerability.

5.​ Hibernate Validator: CVE-2024-38834

Hibernate Validator, used for validating user inputs, is
affected by CVE-2024-38834. This vulnerability, present in
versions prior to 6.2.3, could allow attackers to bypass input
validation checks, resulting in potential data integrity issues
or injection attacks.
Remediation: Update to Hibernate Validator version 6.2.3 or a
later secure release.

Challenges with updating Dependencies:
One of the most significant issues we ran into with updating

dependencies was dependency compatibility issues. Some newer
dependencies between java-spring and java-spring-security were not
compatible with one another, so it was critical to update them to
versions that were compatible and also did not have security issues.
Understanding how these dependencies interacted and how to update
their versions in our POML file was very important for us to learn.
Initially, we updated most of the dependencies to the newest
versions, but this presented issues, so we then went back and updated
them one at a time. Despite this we were left with three dependencies
that still showed vulnerabilities.

Related Work & Research

The security of web applications has been extensively studied, with
numerous articles and papers highlighting best practices for
implementing robust security measures. For instance, the article
"Implementing JWT Authentication and Password Encryption with Bcrypt
in a Node.js Application" explores the integration of password
encryption and JWT authentication, emphasizing the importance of
secure password storage and token-based authentication mechanisms.
Similarly, the article "How to Secure a REST API Using JWT
Authentication" discusses the implementation of JWTs for securing
RESTful APIs, detailing the process of token generation, validation,
and best practices for secure storage. In the context of HTTPS
implementation, the article "OAuth2 with Password (and hashing),
Bearer with JWT tokens" provides insights into securing data in
transit and preventing man-in-the-middle attacks, along with
challenges related to certificate management. Several studies have

6

also focused on the importance of dependency management in web
application security. For example, the National Vulnerability
Database entry CVE-2023-35116 highlights vulnerabilities in the
Jackson Databind library, underscoring the risks associated with
outdated dependencies. Additionally, the article "Log4J2
Vulnerability and Spring Boot" discusses the critical vulnerabilities
found in the Log4j library and the importance of timely updates to
mitigate potential security risks.

Differentiating Our Work:

1.​Comprehensive Security Integration in Capstone Projects: Unlike
existing studies that typically focus on individual security
measures, our work integrates password encryption, JWT
authentication, HTTPS, and dependency management into a unified
security framework within a practical, full-stack capstone
project.

2.​Implementation Challenges in Diverse Environments: We tackled
unique implementation hurdles, such as generating and managing
self-signed certificates for HTTPS across multiple operating
systems. This adds depth to the understanding of cross-platform
security implementation.

3.​Real-World Application for Job Seekers: By focusing on a job

application tracker, our project directly addresses a tangible
user need while ensuring data privacy and security—bridging a
gap between theoretical security practices and real-world
applications.

Conclusion

​ For this project we were successfully able to transfer our Job
Application Tracker from a general web application to a secure system
that protects users data and privacy. Our approach included
implementing password encryption, JWT authentication, and HTTPS
protocols which together provide a great layer of security for the
user. Once these security measures were implemented we were able to
run an OWASP dependency check which was able to reveal several
critical and high-severity vulnerabilities in our dependencies that
we would have never known were there. This showed us the importance
of regular security assessments and maintaining up to date
dependencies in modern web applications.

7

​ This project also provided valuable insights into how complex
securing a full-stack application can be. Working with Spring
Security and managing JWT tokens taught us how important it is to
have proper authentication flow, while the challenges we faced with
HTTPs implementation across different operating systems showed us the
intricacies of securing data in transit. From this experience we also
learned that dependency vulnerabilities show that security is not a
one time implementation but more of an ongoing process that needs to
be checked regularly.

​ One of the most significant takeaways from this project was
understanding that security implementation is about more than just
added features. It's about making sure that every aspect of
development is influenced with a security mindset. This project has
given us the practical experience in implementing security measures
that are necessary for any full-stack web application.

​

Future Work

The identified vulnerabilities in Apache Commons IO, Spring Security,
Bouncy Castle, Log4j, Jackson Databind, and Hibernate Validator
emphasize the critical need to maintain up-to-date dependencies.
Addressing these issues promptly will significantly reduce the risk
of potential exploitation. If we were to plan on launching our
product, we should seek to prioritize updating the Apache Commons IO
library, as its vulnerability is rated as critical, followed by
addressing the high-severity vulnerabilities in Log4j, Spring
Security, and Bouncy Castle. Updates to Jackson Databind and
Hibernate Validator should follow as part of a comprehensive
remediation plan. Furthermore, adopting automated vulnerability
scanning tools and conducting regular dependency checks will help
ensure ongoing security and prevent the introduction of new risks. By
resolving these vulnerabilities systematically, the application will
be better protected against exploitation.

8

References:
​

https://dev.to/beincharacter/implementing-jwt-authentication-and-pass
word-encryption-with-bcrypt-in-a-nodejs-application-1572

https://blog.logrocket.com/secure-rest-api-jwt-authentication/

https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/

https://nvd.nist.gov/vuln/detail/CVE-2023-35116

https://spring.io/blog/2021/12/10/log4j2-vulnerability-and-spring-boo
t?s=08&utm

9

https://dev.to/beincharacter/implementing-jwt-authentication-and-password-encryption-with-bcrypt-in-a-nodejs-application-1572
https://dev.to/beincharacter/implementing-jwt-authentication-and-password-encryption-with-bcrypt-in-a-nodejs-application-1572
https://blog.logrocket.com/secure-rest-api-jwt-authentication/
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/
https://nvd.nist.gov/vuln/detail/CVE-2023-35116
https://spring.io/blog/2021/12/10/log4j2-vulnerability-and-spring-boot?s=08&utm
https://spring.io/blog/2021/12/10/log4j2-vulnerability-and-spring-boot?s=08&utm

