
The Prometheus Java Client​
and Micrometer 
 
Author Fabian Stäber 
Date 2021-02-26 
Formatting Presentation of the current status is in black.​

Opinion and proposals for future development are in green. 
Audience Developers who are familiar with the Prometheus Java client library but not 

necessarily with Micrometer or the Java ecosystem. 
Terminology ●​ Prometheus Java client:​

https://github.com/prometheus/client_java 
●​ Micrometer's Prometheus meter registry: 

https://github.com/micrometer-metrics/micrometer/tree/master/implemen
tations/micrometer-registry-prometheus 

 

Abstract 
This document describes the current status of the Prometheus Java client, its relation to 
Micrometer, and plans for future development. 

Micrometer Overview 
Micrometer is a vendor-agnostic metrics library written in Java that was developed by the Spring 
project as part of Spring Boot 2 under the Apache 2.0 license. It ships with Spring boot, and has 
been adapted by other frameworks like Micronaut or RedHat's Quarkus. 
Micrometer is popular in Java frameworks because it allows them to implement built-in metrics 
against a stable API without binding the framework to a specific monitoring system. Users can 
configure Micrometer to export Prometheus metrics, but it also provides meter registries for 
more than a dozen other vendors1. 
Micrometer's Api defines interfaces for Meters. There are different types of Meters: 

●​ Counter meters, corresponding to Prometheus counters. 
●​ Gauge meters, corresponding to Prometheus gauges. 
●​ Timer meters for measuring time intervals, corresponding to Prometheus histograms or 

summaries. 
●​ Distribution summary meters use the same internal data model as timers, but for things 

that don't represent time, e.g. request sizes. 

1 AppOptics, Atlas, Datadog, Dynatrace, Elastic, Ganglia, Graphite, Humio, Influx, Instana, JMX, 
KairosDB, New Relic, SignalFx, Stackdriver, StatsD, Wavefront. 

https://github.com/prometheus/client_java
https://github.com/micrometer-metrics/micrometer/tree/master/implementations/micrometer-registry-prometheus
https://github.com/micrometer-metrics/micrometer/tree/master/implementations/micrometer-registry-prometheus


Meters support tags which have the same semantics as Prometheus' dimensional metric data 
model. 
Vendors provide implementations for these interfaces in a vendor-specific meter registry. For 
example, there is a micrometer-registry-prometheus module, maintained by the Micrometer 
project, implementing a meter registry for Prometheus metrics. 
Vendor-specific meter registries differ a lot in their internal representation of the metrics. For 
example, the Prometheus meter registry represents counter meters as monotonously increasing 
Prometheus counters, while other vendors may decide to represent their counter meters as 
aggregated rate metrics. 

Data Model 

Comparison of the Data Model Implementations 
Micrometer's Prometheus meter registry provides its own implementation of the metric types. It 
does not use Counter, Gauge, Histogram, and Summary from the Prometheus Java library. The 
following table shows how the original Prometheus data types are implemented in Micrometer's 
Prometheus meter registry. 
 

Prometheus' Java Library Micrometer's Prometheus Meter Registry 

Counter io.micrometer.prometheus.PrometheusCounter 
Very similar to the counter implementation in the 
Prometheus Java client, based on the same underlying 
DoubleAdder. 

Gauge io.micrometer.core.instrument.internal.DefaultGauge 
Implementation is not specific to the Prometheus meter 
registry, but used in meter registries from multiple vendors. 

Histogram​
Summary​
(GaugeHistogram) 

io.micrometer.prometheus.PrometheusTimer 
The underlying representation in Micrometer is an Hdr 
histogram (to be precise: Several Hdr histograms 
representing sliding time windows). 
The implementation of the Hdr histogram is not specific to 
the Prometheus meter registry, it's used in meter registries 
from multiple vendors. 
It is highly configurable how the data from the internal Hdr 
histograms are exported: 

●​ Per default you always get some simple base 
metrics like min, max, count. 

●​ Hdr histograms can be exported as Prometheus 
summaries, Micrometer has API for specifying the 
desired quantiles. 

●​ Hdr histograms can be exported as Prometheus 
histograms with the original Hdr histogram buckets. 



This is useful when the user intends to use the 
histogram_quantile() function in PromQL, 
potentially after aggregating multiple histograms. 

●​ The Hdr histograms support configurable custom 
bucket boundaries, which is useful if an SLO defines 
bucket boundaries that are not represented in the 
default Hdr histogram implementation. 

 
io.micrometer.prometheus.PrometheusDistributionSummary 
Same underlying Hdr histograms, but used for distributions 
that do not represent latencies, e.g. request sizes. 

(Info)​
(StateSet) 

counter (?) 

 

Future Plans for the Data Model 
As shown above, Micrometer does not use the Counter, Gauge, Histogram, and Summary 
implementations from the Prometheus Java client library. Here are some ideas on maintaining 
the data model of the Prometheus Java client library in the future: 

●​ We want the Prometheus Java client library to remain usable without Micrometer. Thus 
we will keep maintaining the implementation of the data model in the Prometheus Java 
client library. 

●​ The Prometheus Java client library recently introduced support for the new OpenMetrics 
types: Info, StateSet, and GaugeHistogram. We should aim at making these available 
via the Micrometer API. This will be a PR for Micrometer's Prometheus meter registry, 
not for the Prometheus Java client. 

●​ If Björn's "sparse high-resolution histograms"2 become accepted, we will need to provide 
a Java implementation, and this implementation will need to replace the current Hdr 
histograms in Micrometer's Prometheus registry. As Micrometer calculates quantiles 
from Hdr diagrams, replacing Hdr diagrams will require switching to Prometheus 
Summaries for quantiles in Micrometer's Prometheus registry as well. As a result, 
Micrometer's Prometheus registry will switch from using mostly its own internal data 
model to using the future Prometheus client library's model. There will be some 
discussion needed with the Micrometer project, because the user-facing API for 
configuring histograms in Micrometer does not match the planned configuration options 
for the "sparse high-resolution histograms". 

2 https://docs.google.com/document/d/1cLNv3aufPZb3fNfaJgdaRBZsInZKKIHo9E6HinJVbpM/edit 

https://docs.google.com/document/d/1cLNv3aufPZb3fNfaJgdaRBZsInZKKIHo9E6HinJVbpM/edit


Exposition Format 
Micrometer uses the Prometheus Java client library as a dependency, and calls 
TextFormat.write004() directly when scraped. The Prometheus Java client library will 
continue to provide and maintain the Prometheus and OpenMetrics exposition formats. 

Built-In Metrics 

Built-In Metrics Provided via Micrometer 
Users may use Micrometer via direct API calls, which is good for monitoring custom business 
logic. However, in practice most Micrometer metrics are provided by Java frameworks and 
libraries out-of-the-box. Users can get very good monitoring coverage just by enabling the 
frameworks' built-in metrics without writing a single line of code. Micrometer provides a flexible 
MeterBinder abstraction that can be used by frameworks to provide metrics. 
As these metrics are maintained by the frameworks and libraries, and not by the Micrometer 
project itself, it is hard to list all built-in Micrometer metrics. To give a glimpse, here's a list of 
Micrometer metrics provided by Spring boot, taken from the Spring boot documentation: 

●​ VM metrics (various memory and buffer pools, garbage collection, threads utilization, 
number of classes loaded/unloaded) 

●​ CPU metrics 
●​ File descriptor metrics 
●​ Kafka consumer, producer, and streams metrics 
●​ Logging metrics: Log4j2, Logback 
●​ Tomcat metrics 
●​ Spring Integration metrics 
●​ Spring MVC Metrics 
●​ Spring WebFlux Metrics 
●​ Jersey Server Metrics 
●​ HTTP Client Metrics 
●​ Cache Metrics (including Caffeine) 
●​ DataSource Metrics 
●​ Hibernate Metrics 
●​ RabbitMQ Metrics 
●​ Kafka Metrics 

This list is incomplete, there are tons of other frameworks providing metrics via Micrometer. 

Instrumentation Libraries provided by the Prometheus Java Client 
Project 
Apart from the core Java client library, the Prometheus Java client Github repository contains 
several instrumentation libraries for popular Java libraries: 



 
●​ Caffeine 

○​ Caffein is a cache implementation in Java 
○​ simpleclient_caffeine is an exporter for monitoring that cache 

●​ Dropwizard metrics 
○​ Dropwizard is a Java metrics library developed as part of the Dropwizard 

framework 
○​ simpleclient_dropwizard is a mapper from Dropwizard metrics to 

Prometheus. 
●​ Guava 

○​ Guava is a cache implementation in Java 
○​ simpleclient_guava is an exporter for monitoring that cache 

●​ Hibernate 
○​ Hibernate is an ORM (used for accessing SQL databases from Java) 
○​ simpleclient_hibernate is an exporter for monitoring Hibernate 

●​ Hotspot 
○​ Hotspot is the most widely used Java virtual machine. 
○​ simpleclient_hotspot is an exporter for monitoring Hotspot (garbage 

collection activity, etc.) 
●​ Jetty 

○​ Jetty is an HTTP server and Servlet container 
○​ simpleclient_jetty is an exporter for monitoring Jetty statistics 

●​ Log4j, etc. 
○​ Log4j, log4j2, and logback are logging libraries 
○​ simpleclient_log4j, etc. are exporters counting the number of errors, 

warnings, infos, etc. 
●​ Spring Boot 

○​ Spring boot is the most popular Java framework 
○​ simpleclient_spring_boot is an exporter for Spring boot metrics. It was 

implemented in 2016 for Spring boot 1, which has reached its end of life. 
●​ Spring Web 

○​ Spring Web is a sub-project within the Spring framework for writing HTTP 
controllers 

○​ simpleclient_spring_web provides an annotation to export execution times for 
HTTP controller calls. Like simpleclient_spring_boot, it was written before Spring 
boot 2 and Micrometer came out. 

Future Maintenance of the Prometheus Java Instrumentation 
Libraries 
Not sure whether we should maintain the instrumentation libraries provided by the Prometheus 
Java client project. We could consider deprecating them. The implementation of these libraries 
is mostly only a few lines of sample code, which could be converted into examples in Markdown 



documentation. For example, a documentation on "How to monitor log messages in log4j" 
explaining the sample code might be more valuable than an actual log4j monitoring library with 
very limited functionality. 
In cases where upstream projects provide Micrometer bindings, we should encourage users to 
use Micrometer for exporting Prometheus metrics. It is likely that upstream projects are better at 
providing meaningful metrics for their own projects than the Prometheus community. 

Built-In Exporters 
The Prometheus Java client project includes a number of built-in exporters for making metrics 
available to the Prometheus server or to Graphite: 

●​ Graphite bridge: Pushes metrics collected with the Prometheus Java client library into 
Graphite. 

●​ HTTP Server: Standalone HTTP server for exporting the metrics. 
●​ Pushgateway: Library for pushing metrics into the Prometheus push gateway. 
●​ Servlet: Exporter servlet to be deployed in a Servlet container. 
●​ Vert.x: Handler for creating a metrics endpoint in the Vert.x Web framework. 

The exporters should be kept and maintained, because without them users will not be able to 
get metrics out of the Prometheus Java client library without using Micrometer. 

Other Future Topics 

Exemplars 
Exemplars have been defined in OpenMetrics as a way of linking metrics to example trace ids. 
Currently, exemplars are neither implemented in the Prometheus Java client library nor in 
Micrometer. It is desirable to add exemplar support. 

Java Flight Recorder (JFR) Event Streaming 
JFR event streaming is a fairly new feature introduced in Java 14. It might be worthwhile to 
explore how to monitor JFR events with Prometheus. Results should be done in form of a 
tutorial documentation, and not providing a ready to use instrumentation library. 


	The Prometheus Java Client​and Micrometer 
	Abstract 
	Micrometer Overview 
	Data Model 
	Comparison of the Data Model Implementations 
	Future Plans for the Data Model 

	Exposition Format 
	Built-In Metrics 
	Built-In Metrics Provided via Micrometer 
	Instrumentation Libraries provided by the Prometheus Java Client Project 
	Future Maintenance of the Prometheus Java Instrumentation Libraries 

	Built-In Exporters 
	Other Future Topics 
	Exemplars 
	Java Flight Recorder (JFR) Event Streaming 


