The Four Patterns of Al native Development

Introduction

The job of a developer consists of performing many different tasks. Like any new technology, Al helps us to
execute these tasks easier, faster, better, cheaper. As some tasks change, it can also introduce new tasks or
make other tasks completely obsolete. This challenges us to rethink how we approach this change instead of just
continuing our existing ways of working. We define this as Al native Development: what are the fundamental
changes and where this is heading to.

The technology side of it is evolving at an unprecedented rate. From simple prompts and chat all the way to
collaborating autonomous agents. The improvements are visible and the expectations high. The thought
experiment is to assume that the technology continues to improve and then extrapolate how that ultimately
influences the current developer role and tasks as being part of a socio-technical system.

Pattern overview

We've distilled a set of patterns that we will describe as shifts in focus from one task to another. It doesn't mean
the original task or focus is less important but rather that Al is getting better at it , allowing us to spend more time
on the new one.

1. From producer to manager: as Al writes more and more of the code, our focus shifts from producing the
code to reviewing the code. In the extreme form Al becomes so good that we only have to deal with the
exceptions and manage situations where it can't execute the task without our help.

2. From implementation to intent. in an ideal world, we just have to specify what we want and have the Al
implement it. We feed it a set of business and technical specifications and keep chatting with it when it
needs more explanation or needs to solve some conflicting requirements.

3. From delivery to discovery: while in the past we were able to pursue the delivery of a single idea, as
implementation is becoming cheaper and faster, we can try out multiple ideas and solutions and discover
which is worth pursuing.

4. From content to knowledge: when everyone can build their ideas reliably, the differentiating factor is the
business domain knowhow and knowledge. Instead of having it buried in documents, we want to surface it
at the right moment and in the right context. Al both helps us and benefits from it to produce better results.

Emerging practices

You may wonder how we got the above patterns. We did this by extrapolating various practices we see in the
industry. We'll look at them through the lens of a specific pattern and notice that practices have different levels of
implementation: from simple to more advanced.This has to do with the adoption level of these practices:
sometimes it's not a mere technology break through but it could be a different design or an emerging need for
new solutions waiting to mature.

1. From producer to manager:
o From simply chatting with Al or doing code autocompletion, we learned that we need to review the
code it produces as it's not always perfect or what we need.



This continues as we're asked to review PRs for code generated by Al. It produces code more
frequently and the code changes are bigger to review. And now it's not only one file anymore, but
multi file changes and refactorings.

As the cognitive load keeps increasing, we're looking for smarter ways to manage this: for example
contextual diffs, step by step reviews , moldable development IDEs.

This will be extended towards dealing with production issues as well: agents asking for our
decision will require us to have situational awareness in case of emergency.

We'll have to know what good looks like and have the Al inform us to make the right decisions. In
addition we'll need to build this human oversight and interaction into our process.

You can't become a manager overnight and it favors the more experienced people. On the other
hand Al can help anyone to level up their knowledge faster allowing them to step into various parts
of the process.

It's important that humans stay in control but we want to avoid micro-managing the system.
Therefore we must be able to assess the risk and the impact of choices. And that we architect for
failsafe environments that reduce the risk for the business and most of all for the end user.

2. From implementation to intent.

O

Prompts and chat were among the first to have expressed what we want in natural language
instead of having to write the code ourselves.

The more Al got access to our context, be it the whole code base, our documentation, the browser
and the terminal, it was able to produce better results.

We moved into a state of continuous prompting, where even the corrections were expressed as
prompts instead of us jumping and correcting the code directly. A concept sometimes referred to
as vibe coding.

We learned we can keep track of some of the recurring conversations into a specifications
documentation as simple as a markdown file and specifying an image as a crude design.

As we accumulate more insights, we add more requirements ranging from actual designs,
technical requirements like backend architecture , coding style , performance all the way up to
functional and business requirements.

Now we can collaborate with various stakeholders and also detect conflicting requirements. We
expect Ai to be able to generate the changing requirements to changes into the code.

The same process can also be used to extract requirements from legacy systems and help in
migration from one system to another.

3. From delivery to discovery:

O

Understanding what needs to be implemented has always been challenging. Agile helped us with
a closer collaboration and understanding the business better.

Still, most of the time was spent on building and delivering the solution to production. The job was
often more focused on building the thing right instead of the right thing.

Now with coding becoming easier and cheaper, we can delegate more of the delivery and focus
more on the discussions with the business. With rapid prototyping, we can generate multiple
versions and ideas in the discovery phase.

In addition to internal discovery , we can now also spend more time listening for signals from
customers and do experiments and get feedback from production. It takes A/B testing to a new
level by auto adapting to the audience.

Discovery does not only have to apply to the business part, also different technical options can be
implemented in parallel and tested to make the right decisions.

And in the case of support and issues, we can have the Al generate multiple hypotheses and
deliver different solutions to help end users.

4. From content to knowledge:



o We used to spend a lot of time googling things or looking them up on Stack Overflow. No shortage
of content available. Now with the help of Al we can bring all that information available when we
need it for a specific task.

o In addition to how to solve a problem, we also rely on documentation to deal with conventions and
guidelines inside the company : from coding styles in Readme files, to dealing with incidents in
runbooks to security and compliance guidelines. We have a love/hate relationship with these
documents : the effort to write them and then keeping them up to date often feels like a chore. Al
can help us to stay on top of it.

o Even within a team or shared codebase whether in public or inside of a company we have a set of
rules we need to follow and jargon we need to understand. It's hard to keep track of changes and
constantly understand the latest. Therefore in context suggestions and learning help us navigate
this space more easily.

o Understanding an existing codebase can take a lot of time and if not documented well, we rely on
almost word of mouth for getting people up to speed. Likewise , the impact of someone leaving the
team will impact the delivery speed. With Al in a constant conversation with us , it can track this
knowledge and capture it as one big memory including remembering past experiments and
learnings.

o Additionally incidents and support can be accumulated together with learnings from the business.
We can learn at our own pace and our learnings are recorded for everyone else to use.

o The more and more easily building things becomes, it becomes a commodity. And the
differentiating factor is that specific domain knowledge, be it technical or business , is vital to stay
ahead of the competition.

Part of a socio technical system

Developers are not the only ones helping to deliver value to the customer : product owners, agile coaches,
engineering leads, testers and QA, data engineers, DevOps & SRE and security all play a vital role. And all roles
in this social technical ecosystem are influenced by Al.

From a higher level, one can recognize the patterns as developers breaking into other roles and vice versa:

- From producer to manager: this is related to becoming an operator and dealing with issues when they
occur. We can learn from all the DevOps observability and automation to help in this shift.

- From implementation to intent: typically a domain for the architects and QA people to write down and
guard the specifications.

- From delivery to discovery: the product owner is typically focused on understanding the business , the
customers and the domain.

- From content to knowledge: like data scientists finding signal in the noise, cleaning and extracting
information of a multitude of data

This should not come as a surprise, as an organization is constant in flux and an interaction between different
actors. We see shifts towards more generalists, not just full stack but also multi domain. Even before Al, good
developers did not only excel at producing code but at collaborating and understanding the business domain and
we expect this trend will only continue and increase.

As for training , hiring and reskilling we believe that besides still understanding and knowing what good code and
delivery looks like, we'd encourage people to cross the role silo boundaries and collaborate with other
stakeholders.



[ QA & Architects ]

SR

From implementation
to intent

discovery to mangger

{ Product }.....igqm.dﬁfive_w ...... [ Development ] ______ Er.c_)mpro#w?r_{ Operations]

From éontent to
knowledge

. /
o

Conclusion

Time will tell how far and how fast this new technology lives up to its promises. We've shied away from the
technical implementation details here to focus on the change in behavior. We've shown the four Al Native Dev
patterns together with the various practices that accompany them. In addition to the shifts in tasks, roles and
responsibilities between the different organisational groups, we'll also have to see where in the organization Al
will come into play. We hope the patterns give you guidance on where to learn and explore new tooling and help
make sense into this ever changing world. We'd love to hear your thoughts on this and also we'd welcome
challenging us with practices you see that don't fit these patterns. The only way is to learn together and in the
open and improve our story.



	The Four Patterns of AI native Development 
	Introduction 
	Pattern overview 
	Emerging practices 
	Part of a socio technical system 
	Conclusion 

