
Overview
The goal of this project is to provide a frontend to allow users to submit a type of calculation
they want to perform on a molecular structure and display relevant data regarding the
calculation. The frontend of this project is built on Angular 16 utilising NgRx for
state-management and the open source java applet JSmol to display the chemical
structures. The backend is built using FastAPI and PostgreSQL database.

Authentication
Our web application utilizes Auth0 for managing user authentication and login processes.
The Auth0 account, designated as “ubchemica”, is overseen by Professor Thachuk.

Configuration:

-​ Frontend: The connection to the Auth0 account is configured in the Angular project
under the file UI/src/environments/environments.ts.

-​ Backend: The basic environment set up and token verification are handled in
backend/app/util.py.

-​ All the sensitive credentials are stored in the .env file in each repository.

Synchronization between Auth0 database and our own:

-​ To manage user state upon successful authentication, we use an effect called
handleUserAuthenticated$ located in UI/src/app/store/effects/user.effects.ts. This
effect ensures that user data is current and properly synchronized with our backend
services.

Frontend
Built with Angular16 using tailwindCSS for styling alongside daisyUI. Colour parameters are
set inside tailwind.config file.

Repository link: UBCC3/UI

File Structure
The structure of the project is currently set up so that the directories in Features are the
routes. Each directory in Features would be the container of that route and would consist of
component folder which would contain all the components for that page

Shared directory contains code (components, models, services) shared across multiple part
of the project

Store directory contains all NGRX related code

Dashboard
Upon successful authentication, the user will land on the dashboard which will display all the
jobs that are currently in-progress or the jobs that have finished running.

Currently the fetch requests to pull the in-progress and completed jobs are only sent on
initial load. The request to fetch the data to have the UI display updated state of the job will
need to be implemented. Send fetch request every 60s might be a good interval

https://github.com/UBCC3/UI

The search function is disabled on the frontend, backend functionality for the search bar has
not been built yet.

New Calculation
When a user creates a new calculation, they will first need to fill in a form with all the
parameters for the calculation and then send a post request to the back end. The back end
would then create a new entry in the Jobs table with the parameters submitted, if the source
of the file that is submitted is uploaded from the user and not from an existing calculation, a
new entry in the Structures table would also be created as well as a new entry in the s3
bucket would be uploaded.

Buttons to add a file by using 3rd party database or from previous calculation is currently
commented out as the specification have not been fully flushed out.

The help icons beside each field on the form would also need to be discussed on what
description should be put beside each one.

In the more settings drop down, the values for wave theory are just placeholders, and need
to get specifications on what values to put as well as what other fields should be included in
the more settings section.

Sample testing data: UI/src/assets/1aho.pdb

Navbar
Help icon and notification icon on the navbar is currently disabled, no specifications have
been decided on what the behaviour of the icon should be (tooltip on hover or modal pop up
on click) or what the content should include.

Notification specifications have not been discussed (what is considered a notification, what
would be the CTA for the notifications and what kind of information would be included in a
notification). Backend also needs to be updated to handle the notifications

Edit Structure
The CTA on the navbar are all placeholders other than the back CTA. Specifications on what
to display and the functionality should discussed

Result
Upon the completion of a job, users can access detailed results by interacting with the job's
entry. Clicking on the job name on the Dashboard page redirects the user to the results
page, which displays comprehensive information related to the job. The results page
presents general information about the job retrieved from our database, along with specific
results generated from the PSI4 cluster.

Job Detail Component

-​ Location: UI/src/app/features/result/components/job-detail

-​ Functionality: This component is responsible for fetching and displaying detailed job
information from the database using the job ID. It renders critical data for user review
directly on the UI.

Download ZIP Component
-​ Location: UI/src/app/features/result/components/download-zip
-​ Functionality: This component provides a functionality for users to download a ZIP

file containing all the result files generated by the PSI4 cluster for the specific job. It
offers a button, enabling easy access to download these files.

Result Detail Component (lots of future work need to be done)
-​ Location: UI/src/app/features/result/components/result-detail
-​ Functionality: This component is intended to handle the downloading of the

result.json file (more information about the file) from the S3 bucket, which contains
structured results data for the job. Upon successful download, it aims to render all
information dynamically based on the content of the result.json file, allowing detailed
inspection of the job results.

-​ Note: Currently, the actually api route which used to download result.json file from s3
is replaced by a testLocalFilePath for testing UI purposes.

JSmol
To install JSmol, can follow instructions from the documentations
JSmol scripting documentations

To load JSmol into the component:
Calling the function in ngAfterViewInit insures everything from the component is rendered
before trying to generate the code for jsmol

 ngAfterViewInit(): void {​
 this.appletElement = this.appletContainer.nativeElement;​
​
 this.loadJSMolWithPromise()​
 .then((appletHtml) => {​
 this.appletElement.innerHTML = appletHtml;​
​
 if (this.file) {​
 setTimeout(() => {​
 this.loadFile();​
 this.setRightClickMenuAccess();​
 }, 100);​
 }​
 })​
​
 .catch((err) => console.error('error loading jsmol: ',

err));​
 }

http://wiki.jmol.org/index.php/Main_Page
http://wiki.jmol.org/index.php/Jmol_JavaScript_Object#Installation
https://chemapps.stolaf.edu/jmol/docs/

loadJSMolWithPromise(): Promise<string> {​
 return new Promise((resolve, reject) => {​
 const script = document.createElement('script');​
​
 script.src = '../../../../assets/jsmol/JSmol.min.js';​
​
 script.onload = () => {​
 // reference to jmol applet object​
 this.appletObject = Jmol.getApplet('jsmolApplet',

info);​
​
 // get html for jmol applet​
 const appletHtml =

Jmol.getAppletHtml(this.appletObject);​
​
 resolve(appletHtml);​
 };​
​
 script.onerror = (error) => {​
 console.log('error', error);​
 reject(error);​
 };​
​
 // add script to html​
 this.renderer.appendChild(document.body, script);​
 });​
 }

To load a file into JSmol:

loadFile() {​
 if (this.file) {​
 if (this.source == SourceEnum.CALCULATED) {​
 const fileContentsAppended = `load data "model"

${this.file} end "model"`;​
 Jmol.script(this.appletObject,

fileContentsAppended);​
 } else {​
 const reader = new FileReader();​
 reader.onload = (event) => {​
 const fileContents = event.target?.result as

string;​

 const fileContentsAppended = `load data "model"

${fileContents} end "model"`;​
 Jmol.script(this.appletObject,

fileContentsAppended);​
 };​
​
 reader.readAsText(this.file);​
 }​
 }​
 }

NgRx
The overall flow of the state-management will follow:

The AppState of the current project looks like:

Notification should also be included in the AppState when specifications have been figured
out. Can be part of the user state or a separate state.

Environmental variables (.env)
There are environmental variables that are read from a .env file in the root for the backend
folder.
This is what the file should look like:
AUTH0_DOMAIN = auth0domain.ca.auth0.com

AUTH0_CLIENTID = auth0_clientid

AUTH0_SECRET = auth0_secret

AUTH0_ISSUER = https://auth0domain.ca.auth0.com/

AUTH0_ALGO = RS256

BASE_URL = http://localhost:8000

FE_URL = http://localhost:4200

Testing
Testing should be added to the project, currently there are only boilerplate test files made.
NgRx testing should also be added to ensure the selectors are correct as well.

Backend
The current idea for the backend structure is to have FastApi handle all the crud operations
and have the AWS built solution to run and select jobs from the DB and run them using
modified PSI4.

Repository link: UBCC3/backend

FastAPI
Currently the FastAPI backend is used to handle CRUD requests for the application.

File Structure

Database
Each schema has its own management.py file which includes all the functions that relate to
the schema query.

Routers
Each route would be in their own route file. All api endpoints related to that route would be
handled in that file. Each endpoint is in the form of a python function like so:

@router.get("/", response_model=Union[list[JobModel], JwtErrorModel])

async def get_jobs(

 response: Response,

 token: str = Depends(token_auth)

):

 return job_dicts

Cluster
The cluster folder manages all functionalities related to interacting with the PSI4 cluster. This
includes job submission, status checks, and result handling.

Cluster Communication
In app/util.py, we implemented a function called cluster_call(), which serves as a centralised
function for all communications with the PSI4 cluster. It constructs command data, initiates
an SSH connection, and handles the execution of Python scripts on the cluster, managing
both input and output.

Key Functionalities in cluster.py:
Job Submission:

●​ Function: submit_job()
●​ Trigger: Initiated when a new calculation is submitted through the UI.
●​ Description: Handles the submission of jobs to the PSI4 cluster.

Job Status Checks:

https://github.com/UBCC3/backend
https://fastapi.tiangolo.com/tutorial/sql-databases/#file-structure
https://fastapi.tiangolo.com/reference/apirouter/#fastapi.APIRouter--example

●​ Function: check_jobs_status()
●​ Trigger: Periodically invoked by a BackgroundScheduler in app/main.py.
●​ Description: This function fetches the current status of running jobs from the

database, sends them for status checking to the PSI4 cluster, and updates the job
records in the database based on the feedback received.

Result Handling:
●​ Function: upload_results()
●​ Trigger: Initiated by check_jobs_status() function when a job status updated to

completed, failed, or canceled.
●​ Description: Asynchronously manages the uploading of job results from the PSI4

cluster. It handles both archives and result.json result data, and ensures they are
correctly uploaded to designated storage paths.

Job Cleanup:
●​ Function: clean_results()
●​ Trigger: Initiated when both archive and json result data are uploaded to s3 with a

success response status.
●​ Description: Responsible for cleaning up result files on the cluster side once a job is

definitively concluded
Job Cancelation:

●​ Function: cancel_job()
●​ Trigger: Initiated when user clicks on the cancel button on the UI.
●​ Description: Cancels the running job on the PSI4 cluster.

Relational Database
For a relational database, postgreSQL is used. The production uses Amazon’s RDS with
traffic only allowed through our EC2 instance.
For local development, setup a regular SQL server using postgre and run the table definition
code inside “datamodel.sql” in the UI repository to set up the schemas.

Environmental variables (.env)
There are environmental variables that are read from a .env file in the root for the backend
folder.
This is what the file should look like:
AUTH0_DOMAIN = auth0domain.ca.auth0.com

AUTH0_CLIENTID = auth0_clientid

AUTH0_SECRET = auth0_secret

AUTH0_AUDIENCE = https://auth0_audience

AUTH0_ISSUER = https://auth0domain.ca.auth0.com/

AUTH0_ALGO = RS256

RDS_PASSWORD = database password

RDS_HOST = database host (aka localhost)

RDS_USERNAME = database username

RDS_PORT = database port (5432 for postgre)

RDS_DBNAME = database name

AWS_ACCESS_KEY_ID = AWS_access-key

AWS_SECRET_ACCESS_KEY = aws-secret-key

AWS_SESSION_TOKEN = aws-session-token

AWS_REGION_NAME = ca-central-1

S3_BUCKET = ubchemica-bucket-1

BASE_URL = http://localhost:8000

FE_URL = http://localhost:4200

CLUSTER_LOC = ../cluster-api/main.py

Open Babel
Open Babel is used to convert different chemical file extensions. Need to add this into the
backend so that the files are consistent. Using Open Babel all incoming structure files are
converted to xyz before run on psi4 or stored in bucket storage (S3).

Installing Open Babel
There are two parts to installing Open Babel:

1.​ Installing the appropriate binaries on the executing machine.
2.​ Installing the python library using pip

Installing the Binaries
Depending on the operating system you are running (in deployment we currently use
Ubuntu) the binaries may be available as a package. This is true of most mainstream linux
distributions as well as Microsoft Windows.
If that is not the case, consult the link above, specifically the “Compiling Open Babel”
section, however, this is not a process that is easy or necessary in most cases.

Installing the openbabel Library
The library has been added to the requirements.txt file in the backend repository and should
be installed upon running the appropriate code, documented in the repository.

To install the library individually run:

pip install openbabel-wheel

PSI4
The PSI4 library needs to be edited so the output file generated from it can be formatted to
contain only the data we need as well as including api calls to the FastAPI backend to store
simple results (energy, etc.) directly into a column on the database.

https://github.com/openbabel/openbabel
http://openbabel.org/docs/Installation/install.html
https://psicode.org/

Currently trying to make a local build from the forked source code running into issues trying
to import the python library, no issue using the library directly from the terminal.

Planned workout for this is to try installing a Psi4 onto a fresh install of a Ubuntu machine
and then trying to edit the source code from the installed path.

Building From Source Code
1)​ Create and activate conda env:

​ *yaml files can be found in UBCC3/psi4/devtools/conda-envs

 conda env create -n p4dev -f /path/to/os_conda_env.yaml --solver

libmamba && conda activate p4dev

2)​ Configure psi4 against activated conda env:

cmake -S. -Bobjdir_p4dev -GNinja

3)​ Move to build dir and build

cd objdir_p4dev && cmake --build .

4)​ Prints the paths that should be executed

stage/bin/psi4 --psiapi

5)​ Run a test

psi4 ../tests/tu1-h2o-energy/input.dat

Nginx
For deployment, the Elastic Compute instance runs Nginx as a web server and reverse
proxy. It routes all HTTPS traffic to the backend port while serving the static Angular files that
are built.

Testing
The testing on the backend is done using unittest, each function should have test cases for
it.
Currently the functions for jobs and structure do not have tests for them yet.

Cluster Scripts
Repository link: UBCC3/cluster-api

https://github.com/UBCC3/psi4/tree/master
https://github.com/UBCC3/cluster-api

This repository contains Python scripts designed for deployment on the PSI4 cluster,
facilitating interactions with the project backend. It includes essential scripts such as
submitting a job, checking a job status, data processing, and results generation.

Communication with Cluster
The cluster used to run the calculations are Beluga computers provided by Alliance Canada
for research facilities. Each of these clusters uses SLURM for job queuing. To run a job, a
user has to enter their console and run a SBATCH bash script. This script will then run on
the head node which assigns however many nodes are needed to the job, schedule it in
queue, and eventually run and return its results with some data for the job (time elapsed,
num of nodes, ...). To avoid misuse and possible security compromise, the user console is
accessible through very strict means: either a physical key or limited one-time ssh
commands run through specific IP addresses.

Our EC2 instance is on the whitelist for IP addresses allowed to run commands on the
cluster. However, the list of commands allowed is very limited. As such, in order to convey
the information needed with the cluster using the cluster_call function we pass certain
information needed for the cluster via command line arguments as a string.

Sample Input
There is a sample_input.json in the cluster_api repository with an example of what the input
sent to the cluster for a job submission will look like.

Each json dictionary will have two keys: ‘action’, and ‘parameters’. Action will be one of 5
words: submit, cancel, upload, check, clean up. Parameters will be details of the job
pertaining to the action word.

Sample Output
Upon the completion of a job, various result files are generated by the computational
processes. A dedicated function then compiles these files into a result.json file, which is
specifically designed to facilitate the rendering of job results to the UI. The sample.json file
serves as a template, demonstrating the expected structure and content of the result.json
file. This template is crucial for ensuring consistency in how information is formatted and
presented, guiding the integration of UI components that display job results.

Job information section
This section contains the data that is obtained from the cluster while not being stored in our
database. This section is currently treated as a placeholder for potential future data fields,
and is adaptable to include any additional fields as needed.

Structure information section

●​ “visualData”

https://docs.alliancecan.ca/wiki/B%C3%A9luga/en
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/quickstart.html

○​ “dataContent”: Intended to hold a long string (e.g. the content in the testing
file 1aho.pdb), which is used to load data into the JSmol viewer on the UI.

●​ “genericData”
Contains relevant information to the structure.

●​ “tableData”
Represents structured data, detailing various properties of the structure.

○​ “Is_graphable”: A boolean value indicates whether the data is graphable or
not. Some future work that needs to be done is to determine a way to know
which columns to graph and which are the 'x' and 'y' values.

○​ “headers”: Defines the columns of the table, with “span ”indicating the number
of columns a header label should span.

○​ “footers”: An optional field that provides additional insights or analysis about
the results presented in the table.

○​ “Clickable”: An optional field that specifies which row “id” and “index” of the
array “value” for row is clickable with the action “dataContent”, which would
be a function name that already written in the result folder of the UI repository
to perform adding a layer to the basic structure.

Example “tableData:
{

 "tableName": "Experimental Vibrational Frequencies",

 "is_graphable": "true",

 "headers": [

 {"label": "name", "span": 1},

 {"label": "predefined basis sets", "span": 1},

 {"label": "energies in hartrees", "span": 1}

],

 "rows": [

 {"id": 1, "value": ["Pentane, 2-methyl-", "G1", "-236.524913"]},

 {"id": 2, "value": ["Pentane, 2-methyl-", "G2MP2", "-236.529269"]},

 {"id": 3, "value": ["Pentane, 3-methyl-", "G1", "-236.523934"]}

],

 "footers": "e.g. analysis about the table result",

 "clickable": [

 {"id": 1, "index": 2, "dataContent": "sample string"},

 {"id": 2, "index": 2, "dataContent": "sample string"},

 {"id": 3, "index": 2, "dataContent": "sample string"}

]

},

Corresponding UI:
Experimental Vibrational Frequencies

name predefined basis sets energies in hartrees

Pentane, 2-methyl- G1 -236.524913(clickable)dat

a

Pentane, 2-methyl- G2MP2 -236.529269(clickable)

Pentane, 3-methyl- G1 -236.523934(clickable)

Sample footer

QCEngine
QCEngine is an interface which facilitates running psi4 inside Python code. The code that
runs QCEngine is called run_qcengine on the cluster-api repository. Its package is available
through PyPi and can be installed through pip.
QCEngine can return the results on its computation as a dictionary in Python which we then
parse through to create the sample output json file. We also dump the entire dictionary in a
“.out” file which is then zipped and archived in S3.

CI/CD Pipeline

Docker
Although there were attempts to containerize the backend server, the DockerFile is not yet
functional and needs further testing and tuning.

Github
Github actions are running per Pull Request to ensure tests and lints pass before merging is
allowed. Currently only the front-end actions are set up to run tests and lint on the changes
to ensure the build succeeds.

Backend and cluster actions have yet to be implemented.

Terraform
Terraform has been discussed to handle the deployment of the project. Will be incorporated
into the project at a later date.

https://github.com/MolSSI/QCEngine

	Overview
	Authentication
	Frontend
	File Structure
	Dashboard
	New Calculation
	Navbar
	Edit Structure
	Result

	JSmol
	NgRx
	Environmental variables (.env)
	Testing

	Backend
	FastAPI
	File Structure
	Database
	Routers
	Cluster

	Relational Database
	Environmental variables (.env)
	Open Babel
	Installing Open Babel
	Installing the Binaries
	Installing the openbabel Library

	PSI4
	Building From Source Code

	Nginx
	Testing

	
	Cluster Scripts
	Communication with Cluster
	Sample Input
	Sample Output
	QCEngine

	CI/CD Pipeline
	Docker
	Github
	Terraform

