
Here are the “questions” from the code file:

Q0 [not in the code as not sure how to make it a question :)]: Notice how the algorithm
for append is the usual one but where lists are nonempty and the message-send syntax
is a little different than function calls.
(Append only checks whether the tail of the list exists instead of checking if the list is empty,
since that is the base case (since this is non-empty list).
When using the message-sending syntax, the programmer has to decide which object to send a
message to in order to generate a new object or cause mutations.)

Q1: For ne-word-list%, why is there a let* outside the class expression?
This caches the result of a large computation and effectively acts as a private static variable
shared across all instances of ne-word-list%. If it were inside the class expression, this
computation would occur on every instantiation.

Q2: Why does ne-word-list% have to override cons and map, i.e., how is the behavior
different than if it inherited them?
This is necessary to provide the guarantee that the resulting object is actually a word list. For
example, if we do not override cons, the superclass method will be used and the new-head
won’t be checked as a word.

Q3: Why does ne-word-list% have to use (= (send this length 1)) in various places?
Calling get-tail on an empty tail is an error, so it’s only possible to safely check that the tail is
nonempty by checking the length. The tail itself cannot be accessed directly by the subclass.

Q4: Why does (fail-app2b) fail while none of the others do?
Append eventually (send other cons head), and example2 (other) is ne-word-list whose cons
expects elements to be words. However, example1 contains non-words

Q5: Why must the definition of extra-words come before the call to (super-new) in
ne-extensible-word-list%?
When super-new is called, the superclass will run the check-word defined in
ne-extensible-word-list% (by overriding) to see if the head is a word in the dictionary. If
extra-words are not defined, that method call will fail. For this reason, the private fields
necessary for a subclass must be defined before an attempt to instantiate the object from its
superclass.

Q6: Why must the dynamic type-check for the tail come after the call to (super-new) in
ne-extensible-word-list%?
When performing the dynamic type-check for the tail, since the object’s tail field has not been
initialized, the superclass length method will fail. In general, an object needs to be properly
instantiated from its superclass before you start sending messages to it.

Q7: For the use of define/augment

 A: Why doesn’t define/override work?
define/pubment only allows subclasses to augment.
 B: Why doesn’t super work?
Use of super is prohibited inside define/augment.
 C: How could you allow a nested inner in subclasses if you wanted that?
You would add a call to the subclass’s check-words with a default argument like (inner #f
check-words w).

-​ If augment does not call inner, subclass augment does nothing (use augride to allow
subclasses to override an augmented function)

-​ If augment calls inner, subclass augment augments

