SELECTIVIDAD 2000 - 2011 - 2012 - INTEGRALES

Ejercicio 1. Sea Ln(x) el logaritmo neperiano de x y sea f : $D \rightarrow R$ la función definida por f(x) = $1/[x.(Ln(x))^2].$

- \in R para los que existe f(x).
- (b) ■ 1 punto ■ Usa el cambio de variable t = Ln(x) para calcular una primitiva de f.

Ejercicio 2. \rightleftharpoons 2,5 puntos \rightleftharpoons Calcula el valor de la integral $\stackrel{\text{$J$-1}}{=}$ $(x^2+5)e^{-x} dx$.

Ejercicio 3. [2'5 puntos Calcula la siguiente integral definida representa geométricamente?

Ejercicio 4. (a) [1 punto → Dibuja el recinto limitado por la curva y =(9 - x²)/4, la recta tangente a esta curva en el punto de abscisa x = 1 y el eje de abscisas. (b) [1'5 puntos Calcula el área del recinto considerado en el apartado anterior.

Ejercicio 5. \rightleftharpoons 2'5 puntos \rightleftharpoons considera la función f: R \rightarrow R definida por f(x)=2+x-x². Calcula α , α < 2 de forma que $\int_{\alpha}^{\alpha} f(x) dx = 9/2$

Ejercicio 6.

(a) ■ 1 punto Dibuja el recinto limitado por las curvas y=e^{x+2}, y=e^{-x} y x=0 (b) ■ 1'5 puntos ■ Halla el área del recinto considerado en el apartado anterior.

Ejercicio 7. •2'5 puntos Calcula el valor de α, positivo, para que el área encerrada por la curva y = $\alpha x - x^2$ y el eje de abscisas sea 36. Representa la curva que se obtiene para dicho valor de α .

Ejercicio 8. \rightleftharpoons 2,5 puntos \rightleftharpoons Sea F: R $^+ \rightarrow$ R la función definida por F(x) = $^{\downarrow}0$ (2t+ $^{\checkmark}f$) dt. (a) ■ 1'5 puntos ■ Determina F(1).

(b) ■ 1 punto ■ Halla la ecuación de la recta tangente a la gráfica de F en el punto de abscisa x = 1

Ejercicio 9. Sea f : R \rightarrow R la función definida por f(x) = $\begin{cases} \frac{1}{1-x} & \text{si} \quad x < 0 \\ 1-mx-x^2 & \text{si} \quad x \ge 0 \end{cases}$ (a) \blacksquare 1'25 puntos \blacksquare Determina m sabiondo sur s

(b) \triangleleft 1'25 puntos Calcula $\int_{-1}^{1} f(x) dx$