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Abstract: This note summarizes the NEST mean yield models for Nuclear Recoils (NR), Electronic Recoils
(ER), and alpha particles in LAr relation to existing data, and compares them to the original NEST Xe
models. The fit procedure and general process used to constrain the model parameters is also described.
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Nuclear Recoil Model

Data: All points from the NR total yield dataset and NR light yield dataset are used in these fits. This
includes the null field points in the NR light yield dataset which are well known to be contradictory towards
the lower energies. Only the two points from the Bondar et al. 2017 paper are excluded from the NR charge
yield dataset, though it is worth noting that these points are extreme outliers from the rest of the data.

Fit Procedure: The total yield and charge yield are chosen as independent models and light yield is modeled
as the difference between the total yield model and the charge yield model. The models are a function of both
the deposited energy and the drift field. The fits are done as a 2D y* minimization over the entire dataset,
which allows the model to be informed in regions of energy/field space that are not well represented by
regions that are well represented. The total yield data set is formed from the intersection of the light and
charge yield datasets; a total yield point is constructed from the sum of light yield and charge yield
measurements at the same field and energy where available.

We first fit the total yield model and take it as fixed. The model is a simple power law in the deposited
energy. There is no field dependence.
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Figure 1: NR Total Yield compared with data for three separate field values.

With the total yield model pinned down, we can then proceed to fit the charge yield model. Because the light
yield is modeled as the difference between the total yield and the charge yield, it is possible to constrain the
charge yield model with both the charge yield dataset and the light yield dataset. This is done by creating a
pseudo-charge yield dataset from the light yield dataset by using the previously fit total yield model. This
does add additional uncertainty in the converted dataset, but this is propagated appropriately using the
uncertainty in the total yield model. The resulting dataset formed by the union of the native charge yield
dataset and the converted light yield dataset is then fit with the charge yield model. The model used is
identical to the one currently implemented in NEST for xenon.
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Figure 2: NR Charge Yield compared with data for four distinct field ranges.

There is one final thing to note with respect to the light yield models. Whereas in general the light yield is
modeled as the difference between the total yield and the charge yield, there were some adjustments to the
low energy behavior to better match the theoretical expectation that the yield drops to zero as it nears the
work function. Specifically, the last piece of the charge yield model was removed so that only the part with
the power law field dependence and the part with the inverse square root dependence on energy remain. This
results in the following model for light yield:

R e
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Although this breaks anticorrelation of the light and charge yields, this effect is only noticeable at the
sub-keV level.
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Figure 3: NR Light Yield compared with data for four distinct field ranges.
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Figure 4: NR Light Yield compared with data at null field.
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Electron Recoil Model

Data:
There are some datasets and points excluded from ER:

- Doke dataset which converted from charge. It is nearly the same as the first Doke set, but both of
them do not agree well with other points (maybe due to density reasons - right now we’re assuming
that density is constant which is not absolutely correct). When both sets are used, fits become much
worse, because these points are inconsistent with the behavior of these other points in this

energy/field range.

- ARIS “negative” point and Sangiorgio 0.27 keV point (because of high errors which mess up fits on
low energies, but that point agrees in the margin of error with final fit).
- Also two artificial points based on first principles were added for better convergence on low energies
(aren’t shown on plots). The reason for that is the small amount of data at this energy range.
All other sets were used including the set from the Kimura LIDINE talk.

Main model:

For ER, the original NEST beta model was chosen (despite that most of our ER argon points are gamma — Xe
gamma model was worse for adaptation). The model has following form:
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Nq is taken as 51.9 quanta/keV (calculated result from Doke data is 51.3+2.63 quanta/keV)
Due to the length of models and large number of parameters, we’ll present them by parts like in the original

NEST code.

Notes: 1) Argon has one more additional parameter in Energy”p3 part — for argon it’s (Energy + 0.5)"p3.
2) ArDensity is constant right now and ArDensity = 1.3954 g/cm”3.

3) Energy is taken in keV, field in V/em.
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Model results:
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Figure 5: Light yield model comparison with data
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ER light yield
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Figure 6: Light yield benchmark plot
Charge yield:
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Figure 7: Charge yield benchmark plot
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Figure 8: Charge yield model comparison with data
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Alpha Model

Data:
Unfortunately there is a very small amount of data (we found only 3 sources) and most of the data are not in
quanta/keV but in arbitrary units like S/SO (light yield divided by light yield at zero field).
For transformation theoretical assumptions from original NEST v1 article were used:
- L-factors and total yields for all energies were calculated like in the above article
- After that SO (light yield at zero field) for all energies were calculated (and used for the light yield
data transformation)
- Qinf (charge yield at infinite field, basically Ni or number of ions) was calculated as S0/1.21 (that
number is 1+Nex/Ni, where Nex/Ni ratio is taken from Hitachi article)
- Also all light yield data was multiplied by quenching factors.

Model:

Because of the small amount of data (only three energy points) both light and charge models are only
field-dependent and independent from each other. Both have “Lindhard-like” form, but they are treated as
purely empirical functions without real relation to Lindhard theory.

Charge model:
Qy(E [keV], F [V/cm])[e/keV] =k * (A — (A* B + 121 f - C*m(Z%*g
)
Parameter Value
k 1/6200
A 64478398.7663
B 0.173553719
C 0.02852
D 001
E
: (4.71598 + Field 7).
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Figure 9: Charge yield model comparison with data from Po-210 and Cf-252
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Light yield:

x 1, % * A« CIn(l+5*5)
Ly(E [keV], F[V/cm]) [y/keV] = qu* k*(A*B +—/—7* (1 - “ap
)
Parameter Value
k 1/6500
1
qu
1.5%Field "
A 278037.250283
B 0.173553719
C 2
D 0.653503
E
E o 12076 997977
Field )
(4.98483 + (m)
Reason for additional qu( “pseudo-quenching”) parameter is a experimentally observed peak at medium
fields from both Hitachi and Agnes papers (that phenomena isn’t observed in xenon):
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Figure 11: Left: peak on Po-210 data (Hitachi). Right: peak on Po-218 data (Agnes).
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Light yield, ph/keV
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Figure 12: Light yield model comparison with data from Po-210, Po-218 and Cf-252

Alpha light yield
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Errors for light yield is calculated as square root of sum of squares: Ax = - /Z (Axl_)z), where the main

source of errors are errors from data (only Agnes data has them) and errors from quenching factor values.
Charge yield data has no reported errors, so for now we assumed 10% errors.
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arXiv:1611.00241, 2016
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Review B, 1992

Datasets:

You can see all sources for datasets here.
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