
SM64 Hacking Tutorial Part 5 - Custom Objects 
By Arthurtilly 

Link to part 4.5 

 
 
Welcome to part 5 of this tutorial. You may have noticed that this is a document rather than a 
slideshow; this is because slides don’t provide enough room for a long string of ASM code. 
 
This tutorial will be looking at how to begin creating custom objects with ASM and behaviour 
scripts. Make sure you’ve read my tutorial for behaviour scripts before reading this! 
 
We’ll start with our custom behaviour script we created in part 4.5, which replaces the Kickable 
Board behaviour script. 

 
To add custom functionality to this behaviour script, we’ll put our ASM at 0x802AA3F4 in RAM. 
Subtracting the offset of 0x80245000 gives us a ROM address of 0x653F4. 
 
Let’s start with the basic function wrapper: 

 
 
 
 
 
 
 
 
 

https://docs.google.com/presentation/d/17oYiwFwYVBl1ATQR_zWBKMGNHPpC_RUtGuevZfWqT7g


Now let’s think about the kind of object we want to create. Let’s create an object that bounces 
you up in the air when you are touching it and are pressing A. First, we should outline our code 
in pseudocode: 

 
(The state doesn’t matter too much as long as it’s an aerial state.) 
The best way to tackle this is to turn each line of pseudocode into ASM at a time. 
 
Let’s start with the code that detects if Mario is touching the object. For this, we need to use the 
Detect Collision function. I actually mentioned this function in part 2; it is located at 
0x802A1424. The function takes the RAM addresses of the two objects that are being testing 
for collision as A0 and A1, and returns the result of the test as V0. If there is collision then it sets 
V0 to 1, otherwise it is set to 0. 
 
First, we should look at two very important RAM addresses for working with custom objects: 
0x80361158 and 0x80361160. These are both pointers, meaning that the value at their address 
is another RAM address, and it is these RAM addresses we need to pass to the function. Later 
we will be looking at these addresses again when we look at object structs. 0x80361158 is the 
RAM address of Mario’s object, and 0x80361160 is the address of the current object (the one 
whose behaviour script is currently being run). Here is some simple code to pass these 
arguments to the function: 

 
Note that sometimes using this function will result in crashes if you interact with other objects. If 
this happens, switch A0 and A1. 
 
Now we want to write code that detects if A is pressed or not. For this, we’ll use the address 
0x8033AFA0, which gives us the currently pressed inputs this frame. Another useful address is 



0x8033AFA2, which gives us all the newly pressed inputs this frame. So for example, if A is 
pressed and wasn’t pressed last frame, then it will be “active” in both of these values, but if A 
was also pressed last frame, it will be active in the former value but not the latter. 
 
You might be wondering what “active” means in this case. Each button has a bit associated with 
it. If that button is active, the value will have that bit set to 1, but if it is not active it will be set to 
0. For example, the button “A” sets the bit 0x8000. I’ll include a full table of inputs and bits at the 
end of this tutorial. To detect if a bit is active, we’ll use the ANDI command (AND Immediate) 
and AND the value with 0x8000. If the bit is set then the result will be 0x8000, but if it is not set 
the result will be 0x0. 

 
Note that we have to reload T0 as we called a JAL in the previous code, which means we 
cannot guarantee that T0 will not have changed. 
 
Now we’ll set Mario’s state to a double jump. We can use the list mentioned in tutorial 4 to find 
that the action value for a double jump is 0x03000881, and we found out that the RAM address 
of Mario’s state is 0x8033B17C. We can use our previous value of T0, as we haven’t used a 
JAL yet: 

 
The only thing we need to do now is set Mario’s Y speed. We’ll set it to 60. We can use this 
handy float converter: https://www.h-schmidt.net/FloatConverter/IEEE754.html to figure out the 
hexadecimal representation of 60, which turns out to be 0x42700000. Now, I haven’t gone over 
floats yet, but for now just know that we need to set Mario’s Y speed to this value. Now, the 
RAM address for Mario’s Y speed is 0x8033B1BC. So let’s write some code for this: 

 
 

https://www.h-schmidt.net/FloatConverter/IEEE754.html


 
 
 
 
Now, there’s one more handy thing to know, and that’s that you can add the behaviour script into 
your ASM file! Simply put this at the top of your file: 

 
and you won’t need to change it in the hex editor! 
 
Let’s put all our code together now: 

 
 
 
 
 



Now, compile this with Armips and add an object with behaviour ID 0x66C to a vanilla ROM. 
You’ll see that if you’re touching the object and are pressing A, Mario will shoot up into the air! 
 

 
Thanks for reading my tutorial! In the next part, I’ll go over object structs, what they are and how 
they can be used to make custom objects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix: List of bits set by each button: 
 

C-Right 0x0001 

C-Left 0x0002 

C-Down 0x0004 

C-Up 0x0008 

R 0x0010 

L 0x0020 

D-Right 0x0100 

D-Left 0x0200 

D-Down 0x0400 

D-Up 0x0800 

Start 0x1000 

Z 0x2000 

B 0x4000 

A 0x8000 

 


